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Chirped random-phase gratings are designed to produce experimentally a super-bunched focusing effect with a
high bunching peak value of g �2��0� � 15.38� 0.05 and a high visibility of 92.5%, greatly surpassing the theo-
retical bunching peak of 2 of thermal light. Both slit-width-chirped and period-chirped random-phase gratings
are studied theoretically and experimentally. The full width at half-maximum of the super-bunched curve
decreases significantly with an increase in the slit number, focusing the photon pairs within a decreasing spot
size. This super-bunched focusing effect can be useful for improving the resolution and the visibility of the
correlation image simultaneously. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.380590

1. INTRODUCTION

Hanbury Brown and Twiss [1,2] recommended the second-
order correlation measurement and a new type of interference
effect between photon-pair amplitudes, i.e., the bunching
effect of thermal light, more than 60 years ago. The physical
essence of the bunching effect embodied by the second-order
coherence of the light fields is two-photon interference, involv-
ing different but indistinguishable alternative ways of triggering
a joint-detection event [3,4]. Both classical and quantum the-
ories [3,5–7] were successfully employed to properly interpret
the bunching effect of light fields, which was regarded as a mile-
stone in quantum optics.

For thermal light propagating in free space, the normalized
second-order spatial correlation function g�2��x, x 0� equals 2
when x − x 0 � 0. On the basis of permutation and combina-
tion, for an interference experiment with N photons detected
coincidently by N detectors, the peak value of the generalized
N -photon bunching effect should be N ! [8]. Therefore, natu-
rally a two-photon super-bunched effect is only observed when
g �2��0� > 2, in comparison with the bunching peak value of 2
of thermal light. A large bunching peak g�2��0� has been dem-
onstrated to be of essential importance in ghost interference,
ghost imaging [9–17], and the multi-photon nonlinear light–
matter interaction [18–22]. Several methods were exploited to
achieve a super-bunched effect, for instance, through the non-
linear light–matter interaction [23–25], collective two-level
atoms coupled with a cavity [26–32], cavity-coupled quantum
dot nanolasers [33–35], optical rogue waves and extreme

phenomena [36,37], squeezed states [38], and increased inten-
sity fluctuations [39–41]. Note that most of them were in the
time domain. Several groups have also paid attention to the
super-bunched effect in the spatial domain [42–46]. And
g �2��0� � 2.4� 0.1 was demonstrated initially by our group
via multiple two-photon path interference introduced by
inserting a pair of mutually first-order incoherent optical chan-
nels into a traditional Hanbury Brown–Twiss (HBT) interfer-
ometer, surpassing the theoretical limit of 2 for thermal light,
which also demonstrates the ability to control the bunching
property of thermal light in a linear optical system [42].
Multiple different but indistinguishable two-photon paths
could also be introduced through random-phase gratings or
wavefront modulation, in which the position-correlated ran-
dom phase was encoded on the transmitting light fields
[46,47]. These indistinguishable two-photon paths of a photon
pair triggering a coincidence count also play a key role in the
second-order subwavelength interference [48–51].

Chirp is a signal in which the frequency increases (up-chirp)
or decreases (down-chirp) with time [52–54], commonly used
in sonar, radar, and spread-spectrum communications. In op-
tics, ultrashort laser pulses often exhibit chirp, which interacts
with the dispersion properties of the materials in an optical
transmission system, increasing or decreasing the total pulse
dispersion as the signal propagates [55]. Similarly, for spatial
chirping, for example, spatially chirped gratings, it is the grating
parameters such as the grating slit width or grating period that
vary slowly with position, either linearly or nonlinearly [56].
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Spatially chirped gratings have been applied to present focusing
properties [56–63] and characteristic diffraction fringes [64,65]
in both the near-field and far-field zones, but mainly in the
first-order optical coherence range. Nonperiodic gratings were
also applied in third-generation synchrotron radiation and
high-resolution X-ray spectroscopy [66,67].

In this paper, we are mainly concerned with the two-photon
bunching properties of chirped random-phase gratings
(CRPGs). Two types of CRPGs are considered. One is where
the grating period d is fixed but the slit width an is chirped. The
other is where the slit width is fixed but the grating period is
chirped. With CRPGs, superposition of multiple different but
indistinguishable two-photon paths is introduced, and the nor-
malized second-order spatial correlation function shows a
bunching curve with a much higher peak and a much narrower
profile than those of thermal light, achieving a two-photon
super-bunched focusing effect, which is potentially useful for
applications such as correlation imaging, microfabrication, and
enhancement of high-order nonlinear light–matter interaction.

2. THEORY

The schematic structure of a slit-width-chirped random-phase
grating is shown in Fig. 1(a), where the grating period d is fixed
but the slit width an is chirped. Therefore, the amplitude of the
light field transmitting through the N -slit grating is also
chirped. In addition, a position-correlated and spatially linearly
chirped random phase �n − 1�ϕ�t� is encoded on the light field
transmitting through the nth slit of the grating, where ϕ�t�
changes randomly with time among �0, 2π� and n is a positive
integer indicating the slit position on the N -slit random-phase
grating.

Let us consider the first- and second-order interference ef-
fects of the light field transmitting through a slit-width-chirped
random-phase grating in the Fraunhofer zone when a colli-
mated single-mode laser beam is incident normally onto the
slit-width-chirped random-phase grating. The schematic

configuration for studying the first- and second-order coher-
ence of the light field transmitting through CRPGs is illustrated
in Fig. 1(b), where L is a lens to collect the scattering light from
the CRPG and CCD is a charge-coupled device camera for re-
cording the intensity distribution on the focal plane of lens
L. In the one-dimensional case and under the paraxial approxi-
mation, the field operator on the detection plane can be
expressed as

Ê ����x� ∝
XN
n�1

sinc

�
πanx
λf

�
e−i

2πx�n−1�d
λf e−i�n−1�ϕâ, (1)

where â is the annihilation operator of the light field and λ, x,
and f are the wavelength of the light source, the transverse
coordinate on the detection plane, and the focal length of lens
L, respectively. One sees that multiple diffraction orders of the
grating are taken into account. For simplicity, here we restrict
ourselves to the case where the grating parameters are not in the
subwavelength range and the paraxial approximation is always
satisfied, and we just consider the spatial coherence properties
of the light fields. The synchronous first-order spatial correla-
tion function can be calculated as

G�1��x� � hE��x�E�x�i ∝
XN
n�1

sinc2
�
πanx
λf

�
, (2)

where E�x� is the eigenvalue of the field operator Ê ����x� on
the state of the source and h	 	 	i represents the ensemble aver-
age. It is evident that the intensity distribution on the detection
plane is the sum of the diffraction intensities from N slits of the
slit-width-chirped random-phase grating, and no stationary
first-order interference pattern can be observed due to the con-
dition heiϕi � 0. However, the case will be totally different
when the two-photon interference is considered, as we will
show below.

The synchronous second-order spatial correlation function
on the detection plane can be expressed as

G�2��x, x 0� � hE��x�E��x 0�E�x 0�E�x�i: (3)

By substituting Eq. (1) into Eq. (3) and taking into consid-
eration the condition heilϕi � 0 if l ≠ 0, one can obtain

G�2��x, x 0� ∝
�X2N−2

l�0

���� X
�m, n�;m�n−2�l

e−ilϕ
�
sinc

�
πamx
λf

�

× e−i
2πx�m−1�d

λf sinc

�
πanx 0

λf

�
e−i

2πx 0 �n−1�d
λf

�H �m, n�sinc
�
πanx
λf

�
e−i

2πx�n−1�d
λf

× sinc
�
πamx 0

λf

�
e−i

2πx 0 �m−1�d
λf

�����2
�
, (4)

where H �m, n� � 0 (m � n) or 1 (m ≠ n) and m and n re-
present the mth and the nth slits of the grating, respectively.
There is only one valid two-photon path if the two photons
triggering the coincidence counting come from the same
slit. Note that there are many twin two-photon paths originat-
ing from different pairs of slits �m, n�, �m� 1, n − 1�,
�m� 2, n − 2�, and so on, whose amplitudes contain the same
random phase �m� n − 2�ϕ, as shown in Fig. 1(c). These

Fig. 1. (a) Schematic diagram of the designed slit-width-chirped
random-phase grating. an (n � 1, 2,…,N ) is the width of the nth
slit, and N is the total slit number of the grating; ϕ�t� is a random
phase changing with time among �0, 2π�, and d is the fixed period of
the grating. (b) Schematic configuration for studying the coherence
property of the light field transmitting through the chirped ran-
dom-phase grating in the Fraunhofer zone, where L represents a lens
for collecting the scattering light from the chirped random-phase gra-
tings and CCD is the charge-coupled device camera for recording the
intensity distribution on the focal plane of lens L. (c) Schematic dia-
gram of indistinguishable two-photon paths.
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two-photon paths are indistinguishable in principle. Our pre-
vious work has proved that the amplitude superposition of all
these different but indistinguishable two-photon paths with the
same random phase �m� n − 2�ϕ can enhance the two-photon
interference with a signature of high visibility in a random-
phase grating [47].

The normalized second-order spatial correlation function
can then be calculated as

g �2�N �x, x 0� � G�2��x, x 0�
G�1��x�G�1��x 0�

� 1�
PN−1

r�1

n
2 cos

h
2π
λf �x − x 0�rd

i
C�x, x 0�

o
D�x, x 0� , (5)

where

C�x, x 0� �
XN−r

p�1

XN−r

q�1

sinc

�
πxap
λf

�
sinc

�
πxap�r

λf

�

× sinc
�
πx 0aq
λf

�
sinc

�
πx 0aq�r

λf

�
, (6)

D�x, x 0� �
XN
m�1

sinc2
�
πxam
λf

�
×
XN
n�1

sinc2
�
πx 0an
λf

�
: (7)

One sees that the second-order spatial correlation function
on the detection plane is a weighted superposition of a set of
periodic interference fringes, in which the weight function
C�x, x 0� is the product of multiple sinc functions characterizing
the two-photon paths, with the two photons originating from
two slits separated by rd and having the same random phase
�p� q � r − 2�ϕ. These periodic interference fringes have dif-
ferent interfering periods λf ∕rd , and they are exactly in phase
only when x − x 0 � 0, while they become gradually out of
phase with the increase of x − x 0, leading to a two-photon
bunching peak at x − x 0 � 0. In general, the bunching profile
could be very complicated, depending on the structure param-
eters of the CRPGs. However, super-bunched focusing with a
bunching peak much higher and a bunching profile much nar-
rower than those of thermal light can be achieved by optimizing
the structure parameters of the CRPGs. In the following, we
will give an optimization procedure to produce the super-
bunched focusing effect through the CRPGs.

For simplicity, we fix the position of one detector at x 0 � 0
and scan the other detector at x on the detection plane, which is
also in accordance with the following experiments in Section 3.
In this case, the normalized second-order spatial correlation
function can be simplified as

g �2�N �x�

�1�
2
PN

r�1

h
�N −r�cos

	
2πxrd
λf


PN−r
q�1sinc

	
πxaq
λf



sinc

	
πxaq�r

λf


i
N
PN

n�1sinc
2
	
πxan
λf


 ,

(8)

and its bunching peak can be calculated as

g�2�N �0� � 1� 2
PN−1

r�1 �N − r�2
N 2 � 2N 2 � 1

3N
, (9)

where N is the total slit number of the CRPGs. It is seen that
the bunching peak g �2�N �0� increases with an increasing grating
slit number N , and is larger than 2, the bunching peak of ther-
mal light, when N > 2.

Since the super-bunched focusing effect is defined in com-
parison to the bunching curve 1� sinc2�x� of thermal light in
the traditional HBT interferometer, we therefore assume the
super-bunched profile of the CRPGs in the formula f �xi� �
1� �g �2�N �0� − 1
sinc2�c1xi�, in which the parameter c1 charac-
terizes the spot size of the super-bunched profile of the CRPGs.
The larger the parameter c1, the smaller the spot size of the
super-bunched profile. The super-bunched focusing effect is
achieved when the spot size of the super-bunched profile of
the CRPG is smaller than that of the bunching curve of thermal
light in the traditional HBT interferometer. The visibility of the
super-bunched curve is

V � g �2�max − g
�2�
min

g�2�max � g �2�min

� N 2 − 1

N 2 � 2
: (10)

Obviously, the visibility, increasing with an increasing N ,
can surpass 50% and asymptotically approach 100%.

To achieve a super-bunched focusing profile in the formula
f �xi� � 1� �g�2�N �0� − 1
sinc2�c1xi�, we optimize the grating
slit width an of the CRPGs by means of a MATLAB-
implemented nonnegative least squares algorithm [68]. In this
case, the sum of the squared residual error Sε2 and the total sum
of squares SST can be expressed respectively as

Sε2 �
X

�g�2�N �xi� − f �xi�
2,
SST �

X
�f �xi� − f �xi�
2, (11)

where f �xi� is the mean value of the fitting function f �xi�. It is
the optimal solution when the coefficient of determination
R2 � 1 − Sε2∕SST gets closest to 1. But in practice, it is con-
sidered to be an effective fitting when 0.8 < R2 < 1. A set of
equations (see Appendix A) can be obtained with the slit width
an of the CRPGs as the variable, which can be solved to get the
optimal silt width set fang for the super-bunched focusing ef-
fect. Several examples with different total slit numbers N � 4,
8, 16, and 50 are given in Appendices B.1 and B.3. Note that
here the chirping is usually nonlinear in order to suppress the
sidelobes beyond the focusing point.

We have theoretically shown that if the grating period is fixed
while the slit width is chirped, the super-bunched focusing effect
can be obtained. In the other case—for a period-chirped ran-
dom-phase grating, where the slit width is fixed but the period
is chirped—one can also demonstrate the super-bunched focus-
ing effect. By employing a similar procedure to the case with
slit-width-chirped random-phase gratings, one obtains the nor-
malized second-order spatial correlation function

g �2�N �x,x 0� � 1� 2

N 2

XN−1

r�1

XN−r

p�1

XN−r

q�1

× cos

(
2π

λf

"
ra�x − x 0�� x

Xp�r−1

k�p

bk − x 0
Xq�r−1

k 0�q

bk 0

#)
,

(12)
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where a and bk are the fixed slit width and the kth grid line of the
gratings, respectively, satisfying dk � a� bk, with dk being
the chirped grating period at the kth slit. In Eq. (12), we replace
the grating period dk with the grating grid line bk in order to
simplify the calculation. The same optimization procedure can
be employed to get an optimized set fbkg for the super-bunched
focusing effect. Several examples with different total slit numbers
N � 4, 8, 16, and 50 are also given in Appendices B.2 and B.4.

One sees that theoretically the super-bunched focusing ef-
fect is mainly determined by the grating slit number N and the
grating period d . When the grating slit number N is fixed, the
focusing spot size is mainly determined by the grating period d .
A larger grating period results in a smaller focusing spot size. In
the slit-width-chirped random-phase grating case, the grating
period is uniform and fixed. However, in the case with the
period-chirped random-phase grating, the grating period is
chirped, which will induce a broadening effect on the focusing
spot size. Therefore, with the same grating slit number N , the
focusing spot size with the slit-width-chirped random-phase
grating is always smaller than that with the period-chirped
random-phase grating. On the other hand, the field will have
a tighter focusing spot size with a larger grating slit number N .
In practice, however, with a larger grating slit number N , the
optimization procedure for getting the optimal grating param-
eters will require much longer computation time, and the gra-
ting fabrication process should also be precise enough, because
any fabrication deviation from the optimal grating parameters
will result in a broadening effect on the focused spot size.
Therefore, there is a trade-off between the cost and the perfor-
mance in choosing an appropriate N , and it is better to choose
an appropriate N according to the requirement on the focused
spot size in practical applications. In addition, one sees that
theoretically the bunching peak value is the same for both
CRPGs, and it asymptotically approaches �2∕3�N , which
could be very high with increasing N . In practice, however,
the grating slit number N is always limited because of the lim-
ited grating size. Moreover, the bunching peak value is also af-
fected by the optimization process and the fabrication process
of the CRPG. To get a high bunching peak value, one has to
suppress the sidelobes of the bunching curve. The lower the
sidelobes, the higher the bunching peak value.

In the following, we will demonstrate experimentally this
super-bunched focusing effect through the proposed CRPGs.

3. EXPERIMENTAL DEMONSTRATION AND
DISCUSSION

Figure 2 shows the schematic diagram of the experimental
setup for measuring the super-bunched focusing effect through
the CRPGs. In the experiments, a single-mode continuous-
wave (CW) laser operating at 780 nm was expanded and colli-
mated through a beam expander (BE), which consisted of two
K9 plano–convex lenses L1 and L2 with focal lengths of 10 mm
and 200 mm, respectively, and an aperture placed at the con-
focal point of the two lenses and used as a spatial filter. The
expanded and collimated light beam, after being reflected by
a 50∶50 non-polarizing beam splitter (BS), was incident nor-
mally on the CRPG. The grating was composed of an N -slit
black–white transmitting amplitude mask (a glass plate with

a Cr lithography mask) and a reflection-type phase-only
spatial light modulator (SLM, HEO 1080P from HOLOEYE
Photonics AG, Germany, pixel size 8 μm, diffraction efficiency
65%), as shown in the upper-right inset of Fig. 2. Here, the
SLM was placed just behind and as close as possible to the am-
plitude mask, in such a way that the light transmitting through
the slit of the amplitude mask would be reflected by the SLM
and retransmit through exactly the same slit of the mask, but in
the opposite direction. The linearly chirped random phase dis-
tributed with equal probability among �0, 2π� was encoded on
the reflected light beam from the SLM and controlled by a
computer with a refresh rate of 60 Hz (not shown in Fig. 2).
Both slit-width-chirped and period-chirped random-phase gra-
tings were designed and fabricated individually, and they could
be replaced with one another manually in the experiments
when necessary. The scattered light from the CRPG was col-
lected by a lens L3 with a focal length of 800 mm and then
recorded by a CCD camera (pixel size: 12.9 μm, 512 × 512)
at the focal plane of the lens. In total, 10,000 intensity frames
were recorded and used to calculate the first-order intensity dis-
tribution and the second-order spatial correlation function,
each frame with a recording time of 1 ms.

Figure 3 shows the measured normalized second-order spa-
tial correlation function g�2�N �x� of the light fields on the detec-
tion plane with different types of CRPGs. Theoretically, the
second-order spatial correlation function can be measured by
fixing one detector at x 0 � 0 and scanning the other detector
on the detection plane. In the experiments, the intensity dis-
tribution on the detection plane was recorded by the CCD
camera, and the second-order correlation measurement was
performed by simply using a CCD pixel at x 0 � 0 to serve

BE}

L1

L2

L3

A1

A2
P

BS
CRPG

SLM

-slit amplitude mask(   =4)N N

object

f

Fig. 2. Schematic diagram of the experimental setup. λ∕2, half-wave
plate; L1, L2, L3, lenses; A1, A2, irises; BE, beam expander; P, polar-
izer; BS, 50∶50 beam splitter; CRPG, chirped random-phase grating;
CCD, charge-coupled device camera. The straight arrows in the opti-
cal path indicate the propagating and scattering light. The upper-right
inset shows the detailed structure of the chirped random-phase grating,
which is composed of an N -slit black–white transmitting amplitude
mask and an SLM, and they are placed as close as possible. The lower-
left inset shows the object placed on the focal plane of L3 in the ghost
imaging experiments.
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as the fixed detector, and using the other pixels along the x axis
to mimic the scanning detector. Figure 3(a) shows the results of
slit-width-chirped random-phase gratings with N � 4, 8, and
16, respectively. Here, the grating period was fixed to be
400 μm, and the slit width of the grating as listed in
Appendix B.1 was chirped. Experimentally, the bunching peak
was measured to be 2.69, 3.94, and 6.89 for N � 4, 8, and 16,
respectively, surpassing the theoretical limit of 2 for thermal
light. The visibility near x � 0 was measured to be 72.4%,
80.3%, and 87.7% with N � 4, 8, and 16, respectively.
The full width at half-maximum (FWHM) of the super-
bunched curve was measured to be 380 μm, 150 μm, and
90 μm, respectively, for N � 4, 8, and 16. In comparison,
the bunching peak value, the visibility, and the FWHMof ther-
mal light were measured to be 1.74, 27.1%, and 503 μm, re-
spectively. One sees that with an increasing total grating slit
number N , both the bunching peak and the visibility increase
and are much higher than those of thermal light, while the
FWHM of the bunching curve decreases and is much narrower
than that of thermal light, indicating the achievement of the
super-bunched focusing effect through the slit-width-chirped
random-phase gratings. A similar super-bunched focusing ef-
fect was also confirmed for the period-chirped random-phase
gratings, as shown in Fig. 3(b). In this case, the slit width a
was fixed at 100 μm, and the chirped grating grid line fbkg

was as listed in Appendix B.2. The bunching peak was mea-
sured to be 2.47, 4.46, and 6.53 with N � 4, 8, and 16, re-
spectively. The visibility near x � 0 was measured to be 60.9%,
82.1%, and 85.8% with N � 4, 8, and 16, respectively.
Moreover, the FWHM of the bunching curve was measured
to be 480 μm, 220 μm, and 120 μm, respectively.

To further demonstrate the capability of improving the per-
formance of the super-bunched focusing effect through the
CRPGs, we optimized and measured experimentally the nor-
malized second-order spatial correlation function with N � 50
for both types of CRPGs. Here, the grating period of the slit-
width-chirped random-phase grating was set to be 200 μm,
while the slit width of the period-chirped random-phase grating
was set to be 30 μm. The chirped slit width set fang for the slit-
width-chirped random-phase grating and the chirped grating
grid line width set fbkg for the period-chirped random-phase
grating were optimized and also listed in Appendices B.3 and
B.4, respectively. The measured super-bunched curves are
shown in Fig. 4, where the bunching peak is measured to
be 12.25 [Fig. 4(a)] and 15.38 [Fig. 4(b)] and the FWHM
of the bunching curve is measured to be 70 μm and 90 μm
for the slit-width-chirped and period-chirped random-phase
gratings, respectively. In principle, a much higher bunching
peak and a narrower-bunching FWHM of the super-bunched
focusing effect can be achieved with a larger total grating slit
number N .

The super-bunched effect can be used to improve the vis-
ibility of the correlation imaging or ghost imaging [9–17]. This
was verified experimentally with our designed super-bunched
focusing light fields based on the scheme of computational
ghost imaging [14,15]. Here the object was a double-slit mask
with a slit width of 300 μm and a slit separation distance of
600 μm, and it was placed on the focal plane of lens L3, as
shown by the lower-left inset in Fig. 2. The bucket signal was
collected by the CCD camera after the signal light passed
through the object, while the spatially resolved reference light
field at the object plane was calculated from the light field
modulated by the CRPG and propagating in free space.
Figure 5 shows the reconstructed ghost images by correlating
the bucket signal with the calculated reference light field. The
colored curves represent the profiles of the ghost images with
the super-bunched focusing light with N � 4, 8, 16, and 50,
and the visibilities of these ghost images were measured to be

Fig. 3. Experimental results for the super-bunched focusing effect
with (a) slit-width-chirped random-phase gratings and (b) period-
chirped random-phase gratings. The grating period in (a) was fixed
at d � 400 μm, and the chirped slit width fang values are listed in
Appendix B.1. In (b), the slit width was set to be a � 100 μm,
and the chirped grating grid lines fbkg are listed in Appendix B.2.
The black solid curves, the blue dash-dotted curves, and the red dotted
curves depict the results for N � 4, 8, and 16, respectively.

(a) (b)

Fig. 4. Experimental results for the super-bunched focusing effect
through chirped random-phase gratings with N � 50. (a) Slit-width-
chirped random-phase grating with a fixed period d � 200 μm,
(b) period-chirped random-phase grating with a fixed slit width
a � 30 μm. The corresponding structure parameters can be found
in Appendices B.3 and B.4, respectively.
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6.9%, 12.0%, 18.7%, and 24.6% for the slit-width-chirped
random-phase gratings [Fig. 5(a)] and 5.3%, 11.7%, 14.6%,
and 22.6% for the period-chirped random-phase gratings
[Fig. 5(b)], respectively. For comparison, the result with a
pseudo-thermal light field generated through a phase-only
SLM is depicted by the black solid curve with a visibility of
4.4% in both Figs. 5(a) and 5(b). One can see that the visibility
of the correlation image is greatly improved with the super-
bunched focusing light fields, and it increases with an increas-
ing N . On the other hand, one sees that the imaging profile
deviates significantly from the ideal one with an increasing N .
This is because the sidelobes of the focusing spot become more
significant with a larger N , as shown in Figs. 3 and 4. In ad-
dition, the spatial resolution of the correlation image is also
improved as the image profile at the slit edge becomes steeper
and steeper with the super-bunched focusing light with an
increasing N .

4. CONCLUSIONS

In conclusion, we have designed two types of CRPGs, the slit-
width-chirped and the grating-period-chirped random-phase
gratings, through which the two-photon super-bunched focus-
ing effect can be realized in the Fraunhofer zone. Theoretically,
the bunching peak and the visibility of the super-bunched

curves can asymptotically reach �2∕3�N and 100%, respec-
tively, where N is the total slit number of the CRPGs.
Experimentally, we verified that the bunching peak and the vis-
ibility of the two-photon bunching curves for the light trans-
mitting through the CRPGs increased with an increasing N ,
and a bunching peak of 15.38� 0.05 and a visibility of
92.5% were demonstrated through a period-chirped ran-
dom-phase grating with a fixed slit width of 30 μm and
N � 50. The FWHM of the super-bunched curve was con-
firmed to decrease with an increasing N , and a photon-pair
bunched spot size with an FWHM of 70 μm was achieved
through a slit-width-chirped random-phase grating with a fixed
grating period of 200 μm and N � 50, therefore focusing the
photon pairs with greatly improved spatial resolution. This
super-bunched focusing effect could have important potential
applications such as correlation imaging with improved visibil-
ity and spatial resolution or enhanced nonlinear light–matter
interaction.

APPENDIX A: EQUATION SET USED TO
OPTIMIZE THE GRATING STRUCTURE
PARAMETERS OF THE CHIRPED RANDOM-
PHASE GRATINGS

For the case with the slit-width-chirped random-phase gratings,
the equation set used to optimize the slit width an of the
CRPGs is as follows:8>>>>>>>>>>>><

>>>>>>>>>>>>:

∂Sε2
∂a1

� 2
P�g�2�N �xi� − f �xi�
 × ∂g�2�N �xi�

∂a1
� 0

∂Sε2
∂a2

� 2
P�g�2�N �xi� − f �xi�
 × ∂g�2�N �xi�

∂a2
� 0

∂Sε2
∂a3

� 2
P�g�2�N �xi� − f �xi�
 × ∂g�2�N �xi�

∂a3
� 0

..

.

∂Sε2
∂aN

� 2
P�g�2�N �xi� − f �xi�
 × ∂g�2�N �xi�

∂aN
� 0

: (A1)

For the case with the period-chirped random-phase gratings,
a similar equation set is used, but with the variables fang
replaced by the grating grid line width fbkg.

APPENDIX B: OPTIMIZED STRUCTURE
PARAMETERS OF THE CHIRPED RANDOM-
PHASE GRATINGS

1. Slit-Width-Chirped Random-Phase Gratings with
d� 400 μm
For slit-width-chirped random-phase gratings with a fixed gra-
ting period d � 400 μm, the chirped slit width set fang is op-
timized to be {18 μm, 434 μm, 301 μm, 140 μm} for N � 4,
{85 μm, 311 μm, 405 μm, 244 μm, 85 μm, 380 μm, 211 μm,
144 μm} for N � 8, and {230 μm, 233 μm, 260 μm, 395 μm,
147 μm, 380 μm, 366 μm, 230 μm, 378 μm, 383 μm, 256 μm,
297 μm, 398 μm, 240 μm, 309 μm, 169 μm} for N � 16.

2. Period-Chirped Random-Phase Gratings with
a� 100 μm
For period-chirped random-phase gratings with a fixed slit
width a � 100 μm, the chirped grating grid line width set fbkg
is optimized to be {158 μm, 16 μm, 394 μm} for N � 4,

Fig. 5. Normalized ghost image profiles with super-bunched focus-
ing light fields for (a) the slit-width-chirped random-phase gratings
and (b) the period-chirped random-phase gratings. The shaded parts
represent the opaque areas of the double-slit mask. The blue dashed
curves, the green dotted curves, the red dash-dotted curves, and the
pink dash-dot-dotted curves depict the results with N � 4, 8, 16, and
50, respectively. For comparison, the black solid curves show the case
of a pseudo-thermal light field generated through a phase-only SLM.
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{294 μm, 220 μm, 44 μm, 378 μm, 69 μm, 458 μm, 183 μm}
for N � 8, and {92 μm, 545 μm, 28 μm, 211 μm, 121 μm,
103 μm, 280 μm, 451 μm, 147 μm, 38 μm, 199 μm, 545 μm,
45 μm, 380 μm, 78 μm} for N � 16.

3. Slit-Width-Chirped Random-Phase Gratings with
d� 200 μm and N� 50
For slit-width-chirped random-phase gratings with a grating
period d � 200 μm and N � 50, the optimized chirped slit
width set fang is {21 μm, 84 μm, 206 μm, 131 μm,
102 μm, 55 μm, 200 μm, 73 μm, 81 μm, 94 μm, 109 μm,
137 μm, 68 μm, 54 μm, 131 μm, 84 μm, 27 μm, 89 μm,
203 μm, 158 μm, 203 μm, 97 μm, 47 μm, 52 μm, 152 μm,
171 μm, 90 μm, 183 μm, 181 μm, 92 μm, 137 μm, 61 μm,
43 μm, 218 μm, 103 μm, 197 μm, 36 μm, 47 μm, 145 μm,
173 μm, 39 μm, 98 μm, 57 μm, 100 μm, 206 μm, 152 μm,
55 μm, 143 μm, 58 μm, 85 μm}.

4. Period-Chirped Random-Phase Gratings with
a� 30 μm and N� 50
For period-chirped random-phase gratings with a fixed slit
width a � 30 μm and N � 50, the optimized chirped grating
grid line width set fbkg is {133 μm, 68 μm, 25 μm, 165 μm,
163 μm, 168 μm, 87 μm, 91 μm, 27 μm, 156 μm, 169 μm,
169 μm, 153 μm, 64 μm, 110 μm, 148 μm, 166 μm, 146 μm,
60 μm, 57 μm, 115 μm, 97 μm, 149 μm, 81 μm, 83 μm,
106 μm, 76 μm, 44 μm, 49 μm, 138 μm, 158 μm,
167 μm, 138 μm, 169 μm, 76 μm, 94 μm, 165 μm, 62 μm,
44 μm, 137 μm, 87 μm, 96 μm, 122 μm, 147 μm, 144 μm,
120 μm, 97 μm, 65 μm, 58 μm}.
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