• Infrared and Laser Engineering
  • Vol. 50, Issue 4, 20200328 (2021)
Gang Qin1, Fengqiang Ji1, Likun Xia2, Weiye Chen1, Dongsheng Li1、*, Jincheng Kong1, Yanhui Li1, Jianhua Guo1, and Shouzhang Yuan1
Author Affiliations
  • 1Kunming Institute of Physics, Kunming 650223, China
  • 2No.1 Military Representative Office in Kunming of Military Representative Bureau of Army Equipment Department in Chongqing, Kunming 650223, China
  • show less
    DOI: 10.3788/IRLA20200328 Cite this Article
    Gang Qin, Fengqiang Ji, Likun Xia, Weiye Chen, Dongsheng Li, Jincheng Kong, Yanhui Li, Jianhua Guo, Shouzhang Yuan. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328 Copy Citation Text show less
    References

    [1] Reibel Y. Infrared SWAP detects: pushing the limits[C]SPIE, 2015, 9451: 945110.

    [2] Yang Jianrong. Physics Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012. (in Chinese)

    [3] A Rogalski. Third-generation infrared photodetector arrays. Journal of Applied Physics, 105, 091101(2009).

    [4] T Ashley. Non-equilibrium modes of operation for infrared detectors. Infrared Physics, 26, 303-315(1986).

    [5] Ashley T. Infrared detection using minity carrier exclusion[C]SPIE, 1986, 588: 6268.

    [6] Lutz H. Improved high operating temperature MCT MWIR modules[C]SPIE, 2014, 9070: 90701D.

    [7] D Eich. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current. Journal of Electronic Materials, 46, 5445-5457(2017).

    [8] PéréLaperne N. Improvement of long wave p on n HgCdTe infrared technology[C]SPIE, 2016, 9933: 99330H.

    [9] Rubaldo L. Recent advances in sofradir IR on ⅡⅥ photodetects f HOT applications[C]SPIE, 2016, 9755: 97551X.

    [10] P Y Emelie. Modeling and design considerations of HgCdTe infrared photodiodes under nonequilibrium operation. Journal of Electronic Materials, 36, 846-851(2007).

    [11] N T Gordon. HgCdTe detectors operating above 200K. Journal of Electronic Materials, 35, 1140-1144(2006).

    [12] P S Wijewarnasuriya. Nonequilibrium operation of arsenic diffused long-wavelength infrared HgCdTe photodiodes. Journal of Electronic Materials, 37, 1283-1290(2008).

    [13] Kinch M A. High operating temperature MWIR detects[C]SPIE, 2010, 7660: 76602V.

    [14] Wijewarnasuriya P S. Nonequilibrium operation of long wavelength HgCdTe photo detects f higher operating temperature[C]SPIE, 2010, 7780: 77800A.

    [15] S Velicu. MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements. Journal of Electronic Materials, 39, 873-881(2010).

    [16] Velicu S. Two col high operating temperature HgCdTe photodetects grown by molecular beam epitaxy on silicon substrates[C]SPIE, 2013, 8876: 887608.

    [17] D Lee. High-operating temperature HgCdTe: a vision for the near future. Journal of Electronic Materials, 45, 4587-4595(2016).

    [18] Jerrama P. Teledyne’s high perfmance infrared detects f space missions[C]SPIE, 2019, 11180: 111803D.

    [19] A M Itsuno. Design and modeling of HgCdTe nBn detectors. Journal of Electronic Materials, 40, 1624-1629(2011).

    [20] A M Itsuno. Mid-wave infrared HgCdTe nBn photodetector. Applied Physics Letters, 161102, 2-4(2012).

    [21] A M Itsuno. Design of an Auger-suppressed unipolar HgCdTe NBvN photodetector. Journal of Electronic Materials, 41, 2886-2993(2012).

    [22] M Kopytko. Engineering the bandgap of unipolar of HgCdTe-based nBn infrared photodetectors. Journal of Electronic Materials, 44, 158-166(2015).

    [23] P Martyniuk. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range. Journal of Electronic Materials, 42, 3309-3319(2013).

    [24] N D Akhavan. A method of removing the valence band offset discontinuity in HgCdTe-based nBn detectors. Applied Physics Letters, 105, 1-4(2014).

    [25] N D Akhavan. Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation. IEEE Transactions on Electron Devices, 63, 1-8(2016).

    [26] Chu Junhao. Narrowgap Semiconduct Physics[M]. Beijing: Science Press. 2005.

    [27] S T Tobin. 1/f noise in (Hg, Cd)Te photodiodes. IEEE Transactions on Electron Devices, 27, 43-48(1980).

    [28] P Guinedor. Low-frequency noises and DLTS studies in HgCdTe MWIR photodiodes. Journal of Electronic Materials, 42, 3309-3319(2019).

    Gang Qin, Fengqiang Ji, Likun Xia, Weiye Chen, Dongsheng Li, Jincheng Kong, Yanhui Li, Jianhua Guo, Shouzhang Yuan. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328
    Download Citation