• Laser & Optoelectronics Progress
  • Vol. 57, Issue 12, 120001 (2020)
Lixin Liu1、2、*, Meiling Zhang1, Zhaoqing Wu1, Qianqian Yang1, Peng Gao1, and Ping Xue3
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • 3State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/LOP57.120001 Cite this Article Set citation alerts
    Lixin Liu, Meiling Zhang, Zhaoqing Wu, Qianqian Yang, Peng Gao, Ping Xue. Application of Adaptive Optics in Fluorescence Microscope[J]. Laser & Optoelectronics Progress, 2020, 57(12): 120001 Copy Citation Text show less
    References

    [1] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).

    [2] Merkle F, Gerard R, Kern P Y et al. First diffraction-limited astronomical images with adaptive optics[J]. Proceedings of SPIE, 1236, 193-203(1990).

    [3] Wei K, Li M, Chen S Q et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8 m telescope[J]. Research in Astronomy and Astrophysics, 16, 183(2016).

    [4] Salmon J T, Bliss E S, Byrd J L et al. An adaptive optics system for solid-state laser systems used in inertial confinement fusion. [C]∥1st Annual International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, May 30-June 2, 1995, Monterey, CA, United States(1995).

    [5] Wang Q, Kocaoglu O P, Cense B et al. Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics[J]. Investigative Ophthalmology and Visual Science, 52, 6292-6299(2011).

    [6] Schallek J, Geng Y, Nguyen H et al. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization[J]. Investigative Ophthalmology and Visual Science, 54, 8237-8250(2013). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=24150762

    [7] Kitaguchi Y, Fujikado T, Bessho K et al. Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea[J]. Ophthalmology, 115, 1771-1777(2008).

    [8] Ooto S, Hangai M, Sakamoto A et al. High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy[J]. Ophthalmology, 117, 1800-1809(2010).

    [9] Herman B. Fluorescence microscopy[M]. New York: Springer(1998).

    [10] Booth M J. Adaptive optics inmicroscopy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2829-2843(2007).

    [11] Albert O, Sherman L, Mourou G et al. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Optics Letters, 25, 52-54(2000).

    [12] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [13] Zhang C H, Zhao Z W, Chen L Y et al. Application of adaptive optics in biological fluorescent microscopy[J]. Scientia Sinica Physica,Mechanica & Astronomica, 47, 21-34(2017).

    [14] Cha J W, Ballesta J. So P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. Journal of Biomedical Optics, 15, 046022(2010).

    [15] Bourgenot C, Saunter C D, Taylor J M et al. 3D adaptive optics in a light sheet microscope[J]. Optics Express, 20, 13252-13261(2012).

    [16] Tang J, Germain R N, Cui M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 8434-8439(2012).

    [17] Legras R, Gaudric A, Woog K. Distribution of cone density, spacing and arrangement in adult healthy retinas with adaptive optics flood illumination[J]. PLoS One, 13, e0191141(2018). http://europepmc.org/articles/PMC5770065/

    [18] Wu Y K. The therapeutic application of adaptive optics in amblyopia treatment[D]. Luzhou: Southwest Medical University, 6-22(2013).

    [19] Wang Z B. The application of adaptive optical fluorescence closed-loop technology in confocal imaging[D]. Beijing: University of Chinese Academy of Sciences, 15-25(2015).

    [20] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).

    [21] Bon P, Maucort G, Wattellier B et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells[J]. Optics Express, 17, 13080-13094(2009).

    [22] Costa J B. Modulation effect of the atmosphere in a pyramid wave-front sensor[J]. Applied Optics, 44, 60-66(2005). http://www.ncbi.nlm.nih.gov/pubmed/15662886

    [23] Azucena O, Crest J, Kotadia S et al. Adaptive optics wide-field microscopy using direct wavefront sensing[J]. Optics Letters, 36, 825-827(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-6-825

    [24] Bourgenot C, Saunter C D, Love G D et al. Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy[J]. Journal of the European Optical Society: Rapid Publications, 8, 13027(2013).

    [25] Kner P, Winoto L, David A et al. Closed loop adaptive optics for microscopy without a wavefront sensor[J]. Proceedings of SPIE, 7570, 757006(2010).

    [26] Li J, Beaulieu D R, Paudel H et al. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor[J]. Optica, 2, 682-688(2015).

    [27] Li J, Bifano T G, Mertz J. Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination[J]. Journal of Biomedical Optics, 21, 121504(2016).

    [28] Zhao Q, Shi X, Gong W et al. Large field-of-view and deep tissue optical micro-imaging based on parallel wavefront correction algorithm[J]. Chinese Journal of Lasers, 45, 1207001(2018).

    [29] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [30] Gustafsson M G L, Shao L, Carlton P M et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 94, 4957-4970(2008).

    [31] Débarre D, Botcherby E J, Booth M J et al. Adaptive optics for structured illumination microscopy[J]. Optics Express, 16, 9290-9305(2008).

    [32] Thomas B, Wolstenholme A, Chaudhari S N et al. Enhanced resolution through thick tissue with structured illumination and adaptive optics[J]. Journal of Biomedical Optics, 20, 026006(2015).

    [33] Li Q, Reinig M, Kamiyama D et al. Woofer-tweeter adaptive optical structured illumination microscopy[J]. Photonics Research, 5, 329-334(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170803000090OkRnTq

    [34] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [35] Izeddin I, El Beheiry M, Andilla J et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking[J]. Optics Express, 20, 4957-4967(2012).

    [36] Burke D, Kenny F, Patton B et al. Optimal sensorless adaptive optics schemes for super-resolution microscopy. [C]∥Imaging and Applied Optics, June 23-27, 2013, Arlington, Virginia. Washington, D.C.: OSA, pOTu1A, 2(2013).

    [37] Burke D, Patton B, Huang F et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy[J]. Optica, 2, 177-185(2015).

    [38] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [39] Tehrani K F, Xu J Q, Zhang Y W et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm[J]. Optics Express, 23, 13677-13692(2015).

    [40] Tehrani K F, Zhang Y W, Shen P et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization[J]. Biomedical Optics Express, 8, 5087-5097(2017).

    [41] Pawley J B. Handbook of biological confocal microscopy[M]. 3rd ed. Berlin: Springer(2006).

    [42] Tao X D, Fernandez B, Azucena O et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 36, 1062-1064(2011).

    [43] Tao X D, Azucena O, Fu M et al. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars[J]. Optics Letters, 36, 3389-3391(2011).

    [44] Tao X D, Crest J, Kotadia S et al. Live imaging using adaptive optics with fluorescent protein guide-stars[J]. Optics Express, 20, 15969-15982(2012).

    [45] Tao X D, Dean Z, Chien C et al. Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars[J]. Optics Express, 21, 31282-31292(2013).

    [46] Wang Z B, Wei D, Wei L et al. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope[J]. Journal of Biomedical Optics, 19, 086009(2014). http://www.ncbi.nlm.nih.gov/pubmed/25117079

    [47] Hu D T, Shen W, Ma W C et al. Fast convergence stochastic parallel gradient descent algorithm[J]. Laser & Optoelectronics Progress, 56, 122201(2019).

    [48] Wen L H, Huang Q Y, Xu X Q. Optimizing correction algorithm for adaptive optics based on square of wavefront gradient[J]. Laser & Optoelectronics Progress, 56, 240103(2019).

    [49] Pozzi P, Wilding D, Soloviev O et al. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy[J]. Optics Express, 25, 949-959(2017).

    [50] Pozzi P, Soloviev O, Wilding D et al. Optimal model-based sensorless adaptive optics for epifluorescence microscopy[J]. PLoS One, 13, e0194523(2018).

    [51] Liu C G, Kim M K. Digital adaptive optics line-scanning confocal imaging system[J]. Journal of Biomedical Optics, 20, 111203(2015).

    [52] Liu C G, Thapa D, Yao X C. Digital adaptive optics confocal microscopy based on iterative retrieval of optical aberration from a guidestar hologram[J]. Optics Express, 25, 8223-8236(2017).

    [53] Zheng J J, Gao P, Shao X P. Aberration compensation and resolution improvement of focus modulation microscopy[J]. Journal of Optics, 19, 015302(2017).

    [54] Wang C, Ji N. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy[J]. Optics Letters, 37, 2001-2003(2012).

    [55] Wang C, Liu R, Milkie D E et al. Multiplexed aberration measurement for deep tissue imaging in vivo[J]. Nature Methods, 11, 1037-1040(2014). http://www.ncbi.nlm.nih.gov/pubmed/25128976

    [56] Zhang C H, Sun W Q, Mu Q Q et al. Analysis of aberrations and performance evaluation of adaptive optics in two-photon light-sheet microscopy[J]. Optics Communications, 435, 46-53(2019).

    [57] Tao X D, Norton A, Kissel M et al. Adaptive optical two-photon microscopy using autofluorescent guide stars[J]. Optics Letters, 38, 5075-5078(2013).

    [58] Wang K, Sun W Z, Richie C T et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue[J]. Nature Communications, 6, 7276(2015).

    [59] Sinefeld D, Paudel H P, Ouzounov D G et al. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence[J]. Optics Express, 23, 31472-31483(2015).

    [60] Bueno J M, Skorsetz M, Bonora S et al. Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens[J]. Optics Express, 26, 14278-14287(2018).

    [61] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [62] Gould T J, Burke D, Bewersdorf J et al. Adaptive optics enables 3D STED microscopy in aberrating specimens[J]. Optics Express, 20, 20998-21009(2012).

    [63] Patton B R, Burke D, Owald D et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics[J]. Optics Express, 24, 8862-8876(2016).

    [64] Zdańkowski P, Trusiak M, Cywińska M et al. An adaptive optics 3D STED microscope for super-resolution imaging of thick samples with background noise suppression using digital image processing[J]. Proceedings of SPIE, 10834, 108342G(2018).

    [65] Gao P, Nienhaus G U. Precise background subtraction in stimulated emission double depletion nanoscopy[J]. Optics Letters, 42, 831-834(2017).

    [66] Gao P, Prunsche B, Zhou L et al. Background suppression in fluorescence nanoscopy with stimulated emission double depletion[J]. Nature Photonics, 11, 163-169(2017).

    Lixin Liu, Meiling Zhang, Zhaoqing Wu, Qianqian Yang, Peng Gao, Ping Xue. Application of Adaptive Optics in Fluorescence Microscope[J]. Laser & Optoelectronics Progress, 2020, 57(12): 120001
    Download Citation