[1] G L Li, P K L Yu. Optical intensity modulators for digital and analog applications. J Lightwave Technol, 21, 2010(2003).
[2] N Dagli. Wide-bandwidth lasers and modulators for RF photonics. IEEE Trans Microw Theory Tech, 47, 1151(1999).
[3] J N Huang, C Li, R G Lu et al. Beyond the 100 Gbaud directly modulated laser for short reach applications. J Semicond, 42, 041306(2021).
[4] D P Liu, J Tang, Y Meng et al. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator. J Semicond, 42, 082301(2021).
[5] X X Wang, P O Weigel, J Zhao et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics, 4, 096101(2019).
[6] E L Wooten, K M Kissa, A Yi-Yan et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 6, 69(2000).
[7] D Marpaung, C Roeloffzen, R Heideman et al. Integrated microwave photonics. Laser Photonics Rev, 7, 506(2013).
[8] Z Y Lu, Lu B, Y Luo et al. Design and research on small hybrid integrated teansmitter module of semiconductor and DFB laser. J Opto Laser, 32, 181(2021).
[9] Y Li, T Lan, J Li et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl Opt, 59, 6694(2020).
[10] L Y Li, Y X Ma, Y S Zhang et al. Multi-tip edge coupler for integration of a distributed feedback semiconductor laser with a thin-film lithium niobate modulator. Appl Opt, 60, 4814(2021).
[11] M Qiu. Vertically coupled photonic crystal optical filters. Opt Lett, 30, 1476(2005).
[12] S Chakravarty, M Teng, R Safian et al. Hybrid material integration in silicon photonic integrated circuits. J Semicond, 42, 041303(2021).
[13] K Matsumoto, Y Kanaya, J Kishikawa et al. Characteristics of film InP layer and Si substrate bonded interface bonded by wafer direct bonding. 2015 11th Conference on Lasers and Electro-Optics Pacific Rim, 7375926(2015).
[14] M A Olmstead, F S Ohuchi. Group III selenides: Controlling dimensionality, structure, and properties through defects and heteroepitaxial growth. J Vac Sci Technol A, 39, 020801(2021).
[15] .
[16] J Zhang, C X Gao, M Y Xue et al. Research on frequency modulation character of the current driven DFB semiconductor laser. Mod Phys Lett B, 33, 1850422(2019).
[17] R C Alferness. Waveguide electrooptic modulators. IEEE Trans Microwave Theory Tech, 30, 1121(1982).
[18] .
[19] .
[20] L L Wang, T Kowalcyzk. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J Lightwave Technol, 28, 1703(2010).
[21] G Yang, A V Sergienko, A Ndao. Tunable polarization mode conversion using thin-film lithium niobate ridge waveguide. Opt Express, 29, 18565(2021).
[22] M Fukuma, J Noda. Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl Opt, 19, 591(1980).
[23] G R Paz-Pujalt, D D Tuschel, G Braunstein et al. Characterization of proton exchange lithium niobate waveguides. J Appl Phys, 76, 3981(1994).
[24] A Méndez, la Paliza G de, A García-Cabañes et al. Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides. Appl Phys B, 73, 485(2001).