• Photonics Research
  • Vol. 11, Issue 5, 869 (2023)
Philip Menz1、*, Haissam Hanafi1, Daniel Leykam2, Jörg Imbrock1, and Cornelia Denz1、3
Author Affiliations
  • 1Institute of Applied Physics, University of Muenster, Muenster 48149, Germany
  • 2Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
  • 3Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
  • show less
    DOI: 10.1364/PRJ.486916 Cite this Article Set citation alerts
    Philip Menz, Haissam Hanafi, Daniel Leykam, Jörg Imbrock, Cornelia Denz. Pseudospin-2 in photonic chiral borophene[J]. Photonics Research, 2023, 11(5): 869 Copy Citation Text show less
    References

    [1] M. Berry, M. Jeffrey. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics. Prog. Opt., 50, 13-50(2007).

    [2] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [3] M. Mecklenburg, B. C. Regan. Spin and the honeycomb lattice: lessons from graphene. Phys. Rev. Lett., 106, 116803(2011).

    [4] D. Leykam, A. S. Desyatnikov. Conical intersections for light and matter waves. Adv. Phys. X, 1, 101-113(2016).

    [5] M. I. Katsnelson, K. S. Novoselov, A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys., 2, 620-625(2006).

    [6] D. F. Urban, D. Bercioux, M. Wimmer, W. Häusler. Barrier transmission of Dirac-like pseudospin-one particles. Phys. Rev. B, 84, 115136(2011).

    [7] M. I. Katsnelson. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B, 51, 157-160(2006).

    [8] S. Longhi. Quantum-optical analogies using photonic structures. Laser Photon. Rev., 3, 243-261(2009).

    [9] F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, A. Szameit. Classical simulation of relativistic zitterbewegung in photonic lattices. Phys. Rev. Lett., 105, 143902(2010).

    [10] D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L. Tang, J. Xu, M. Ablowitz, N. K. Efremidis, Z. Chen. Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun., 6, 6272(2015).

    [11] F. Diebel, D. Leykam, S. Kroesen, C. Denz, A. S. Desyatnikov. Conical diffraction and composite Lieb bosons in photonic lattices. Phys. Rev. Lett., 116, 183902(2016).

    [12] J.-P. Lang, H. Hanafi, J. Imbrock, C. Denz. Tilted Dirac cones and asymmetric conical diffraction in photonic Lieb-kagome lattices. Phys. Rev. A, 107, 023509(2023).

    [13] B. Dóra, J. Kailasvuori, R. Moessner. Lattice generalization of the Dirac equation to general spin and the role of the flat band. Phys. Rev. B, 84, 195422(2011).

    [14] Z. Lan, N. Goldman, A. Bermudez, W. Lu, P. Öhberg. Dirac-Weyl fermions with arbitrary spin in two-dimensional optical superlattices. Phys. Rev. B, 84, 165115(2011).

    [15] C. Feng, Q. Wang, S. Zhu, H. Liu. Effective spin-2 quasi-particles at linear dispersive five-fold degenerate points with tunable topological Chern numbers. Phys. Lett. A, 383, 2139-2144(2019).

    [16] K. Kim, S. Kim. Mode conversion and resonant absorption in inhomogeneous materials with flat bands. Phys. Rev. B, 105, 045136(2022).

    [17] Y. Nakata, T. Okada, T. Nakanishi, M. Kitano. Observation of flat band for terahertz spoof plasmons in a metallic kagomé lattice. Phys. Rev. B, 85, 205128(2012).

    [18] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, Y. Takahashi. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 1, 1500854(2015).

    [19] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, J. Bloch. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett., 116, 066402(2016).

    [20] R. R. Zope, T. Baruah. Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem. Phys. Lett., 501, 193-196(2011).

    [21] W.-C. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J.-Y. Liu, M.-S. Miao. Honeycomb boron allotropes with Dirac cones: a true analogue to graphene. J. Phys. Chem. Lett., 8, 2647-2653(2017).

    [22] B. Grünbaum, G. C. Shephard. Tilings by regular polygons. Math. Mag., 50, 227-247(1977).

    [23] F. Crasto de Lima, G. J. Ferreira, R. H. Miwa. Orbital pseudospin-momentum locking in two-dimensional chiral borophene. Nano Lett., 19, 6564-6568(2019).

    [24] P. Menz, H. Hanafi, D. Leykam, J. Imbrock, C. Denz. Noncontractible loop states from a partially flat band in a photonic borophene lattice(2022).

    [25] F. C. de Lima, G. J. Ferreira. High-degeneracy points protected by site-permutation symmetries. Phys. Rev. B, 101, 041107(2020).

    [26] A. Szameit, S. Nolte. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B, 43, 163001(2010).

    [27] D. Leykam, O. Bahat-Treidel, A. S. Desyatnikov. Pseudospin and nonlinear conical diffraction in Lieb lattices. Phys. Rev. A, 86, 031805(2012).

    [28] M. Boguslawski, P. Rose, C. Denz. Increasing the structural variety of discrete nondiffracting wave fields. Phys. Rev. A, 84, 013832(2011).

    [29] A. Sharma, A. Agrawal. New method for nonparaxial beam propagation. J. Opt. Soc. Am. A, 21, 1082-1087(2004).

    [30] H. Hanafi, P. Menz, C. Denz. Localized states emerging from singular and nonsingular flat bands in a frustrated fractal-like photonic lattice. Adv. Opt. Mater., 10, 2102523(2022).

    [31] H. Hanafi, P. Menz, A. McWilliam, J. Imbrock, C. Denz. Localized dynamics arising from multiple flat bands in a decorated photonic Lieb lattice. APL Photon., 7, 111301(2022).

    [32] X. Liu, S. Xia, E. Jajtić, D. Song, D. Li, L. Tang, D. Leykam, J. Xu, H. Buljan, Z. Chen. Universal momentum-to-real-space mapping of topological singularities. Nat. Commun., 11, 1586(2020).

    [33] J. Ni, C. Huang, L.-M. Zhou, M. Gu, Q. Song, Y. Kivshar, C.-W. Qiu. Multidimensional phase singularities in nanophotonics. Science, 374, eabj0039(2021).

    [34] R. Contractor, W. Noh, W. Redjem, W. Qarony, E. Martin, S. Dhuey, A. Schwartzberg, B. Kanté. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature, 608, 692-698(2022).

    [35] H. Y. Albuhairan, H. M. Abdullah, U. Schwingenschlögl. Transport and confinement in bilayer chiral borophene. 2D Mater., 9, 025031(2022).

    [36] M. J. Mehrabad, A. P. Foster, R. Dost, E. Clarke, P. K. Patil, A. M. Fox, M. S. Skolnick, L. R. Wilson. Chiral topological photonics with an embedded quantum emitter. Optica, 7, 1690-1696(2020).

    Philip Menz, Haissam Hanafi, Daniel Leykam, Jörg Imbrock, Cornelia Denz. Pseudospin-2 in photonic chiral borophene[J]. Photonics Research, 2023, 11(5): 869
    Download Citation