• Photonics Research
  • Vol. 11, Issue 5, 869 (2023)
Philip Menz1,*, Haissam Hanafi1, Daniel Leykam2, Jörg Imbrock1, and Cornelia Denz1,3
Author Affiliations
  • 1Institute of Applied Physics, University of Muenster, Muenster 48149, Germany
  • 2Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
  • 3Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
  • show less
    DOI: 10.1364/PRJ.486916 Cite this Article Set citation alerts
    Philip Menz, Haissam Hanafi, Daniel Leykam, Jörg Imbrock, Cornelia Denz, "Pseudospin-2 in photonic chiral borophene," Photonics Res. 11, 869 (2023) Copy Citation Text show less

    Abstract

    Pseudospin is an angular momentum degree of freedom introduced in analogy to the real electron spin in the effective massless Dirac-like equation used to describe wave evolution at conical intersections such as the Dirac cones of graphene. Here, we study a photonic implementation of a chiral borophene allotrope hosting a pseudospin-2 conical intersection in its energy–momentum spectrum. The presence of this fivefold spectral degeneracy gives rise to quasiparticles with pseudospin up to ±2. We report on conical diffraction and pseudospin–orbit interaction of light in photonic chiral borophene, which, as a result of topological charge conversion, leads to the generation of highly charged optical phase vortices.
    H^k=t(01eia1keia2keia2k1101eia2keia3keia3keia1k101eia3keia1keia2keia2k101eia1keia2keia3keia3k1011eia3keia1keia1k10),

    View in Article

    |ψ2=16(+1ei13πei23π1ei43πei53π)T,|ψ1=16(+1ei23πei43π+1ei23πei43π)T,|ψ0=16(+11+11+11)T,|ψ+1=16(+1ei43πei23π+1ei43πei23π)T,|ψ+2=16(+1ei53πei43π1ei23πei13π)T,

    View in Article

    l=msinmsout.

    View in Article

    izψ(x,y,z)=[12k0n02k0Δn(x,y)]ψ(x,y,z)=H^ψ(x,y,z).(A1)

    View in Article

    H^k=t(011ia1k1ia2k1ia2k11011ia2k1+ia3k1+ia3k1+ia1k1011+ia3k1+ia1k1+ia2k1+ia2k1011+ia1k1+ia2k1ia3k1ia3k10111ia3k1ia1k1ia1k10),(C1)

    View in Article

    U=16(ei53πei53π1ei43πei13π1ei43π111ei23π11ei13π1ei23π11ei23πei53π1ei43πei43π1eiπ3111ei53π11eiπ31ei23π11).(C2)

    View in Article

    H^eff=t(112(kxiky)00012(kx+iky)112(kxiky)00012(kx+iky)112(kxiky)00012(kx+iky)112(kxiky)00012(kx+iky)1),(C3)

    View in Article

    H^eff=t(112keiθ0012keiθ112keiθ00012keiθ112keiθ00012keiθ112keiθ00012keiθ1),(C4)

    View in Article

    β1,2,3,4,5=t(13k),t(1k),t,t(1+k),t(1+3k).(C5)

    View in Article

    Sz=(2000001000000000001000002).(C6)

    View in Article

    Sx=12(0200020600060600060200020),(C7)

    View in Article

    Sy=12i(0200020600060600060200020),(C8)

    View in Article

    H^eff(k)=c0k·S+c1k·{S,Sz2}tI5,(C9)

    View in Article

    H^eff(k,θ)=c0k2(eiθS++eiθS)+c1k2·(eiθ{S+,Sz2}+eiθ{S,Sz2})tI5.(C10)

    View in Article

    Philip Menz, Haissam Hanafi, Daniel Leykam, Jörg Imbrock, Cornelia Denz, "Pseudospin-2 in photonic chiral borophene," Photonics Res. 11, 869 (2023)
    Download Citation