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Pseudospin is an angular momentum degree of freedom introduced in analogy to the real electron spin in the
effective massless Dirac-like equation used to describe wave evolution at conical intersections such as the Dirac
cones of graphene. Here, we study a photonic implementation of a chiral borophene allotrope hosting a
pseudospin-2 conical intersection in its energy–momentum spectrum. The presence of this fivefold spectral
degeneracy gives rise to quasiparticles with pseudospin up to �2. We report on conical diffraction and
pseudospin–orbit interaction of light in photonic chiral borophene, which, as a result of topological charge
conversion, leads to the generation of highly charged optical phase vortices.
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1. INTRODUCTION

Conical intersections are features of parameter spaces where two
or more energy surfaces become degenerate at one point, while
staying linear in its vicinity. Two prominent examples are
Hamilton’s diabolical point in biaxial crystals in optics [1] and
Dirac cones in solid state’s iconic material graphene [2]. For the
latter, due to the mathematical analogy with the Dirac equation
for massless electrons, a microscopic degree of freedom called
pseudospin was introduced [3]. Unlike the polarization-related
photon spin or the intrinsic spin of electrons, this form of angular
momentum is not associated with any intrinsic property of par-
ticles. Instead, it arises from the substructure of space given by
the periodic potential in which the wave function resides [4].

Pseudospin quasiparticles in periodic lattices with conical
intersections represent a practical test bed for observing quan-
tum relativistic effects implied by the Dirac equation and
its higher-spin versions such as Klein tunneling [5,6] or
Zitterbewegung [7]. Photonic model systems such as evanes-
cently coupled waveguides, so-called photonic lattices, allow
observing a variety of classical analogs of both relativistic
and non-relativistic quantum phenomena associated with the
evolution of electrons in periodic potentials [8,9] due to the
formal correspondence between the Schrödinger equation and
the paraxial wave equation. A convenient feature of photonic
lattices is that they provide direct access to the evolution of the
wave function during propagation. Therefore, a natural step
was to use a photonic platform to realize periodic lattices host-
ing conical intersections in their spectrum and to demonstrate
their peculiarities by studying light propagation through them.
This has already led to realizations of pseudospin-1/2 photonic

graphene [10], the pseudospin-1 photonic Lieb lattice [11],
and the Lieb-kagome transition lattice [12].

A challenging open problem in artificial lattice systems is the
design of conical intersections with higher pseudospin values
[4]. Although there have been proposals for generalized conical
intersections with arbitrary pseudospin [13,14], and pseudo-
spin-2 ones have been considered theoretically [15,16], no real-
istic system containing a conical intersection with pseudospin
higher than one has been demonstrated until now.

Here we present a photonic chiral borophene lattice hosting
a pseudospin-2 conical intersection in its band structure at the
center of its Brillouin zone. We derive the five pseudospin ei-
genstates using both an intuitive approach and a rigorous math-
ematical–analytical approach and numerically study their
conical diffraction during propagation through the photonic
lattice. We prove the interaction of pseudospin and orbital an-
gular momentum by directly observing topological charge con-
version giving rise to optical phase vortices in the conically
diffracted output light fields. Here, by topological charge,
we mean the winding number of the optical wavefront around
the vortex core. Our results apply to various other wave systems
beyond photonics such as metamaterials [17], Bose–Einstein
and polariton condensates [18,19], and importantly also to
electronic wave functions in atomic borophene allotropes.

2. RESULTS

A. Photonic Chiral Borophene and Its Pseudospin-2
Conical Intersection
Figure 1(a) shows a sketch of the chiral borophene lattice.
The lattice has a hexagonal unit cell with six lattice sites
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labeled A to F. This configuration has been calculated to be
stable as a planar sheet of boron atoms [20,21]. This distin-
guishing feature may lead to the realization of pseudospin-2
conical intersections in a solid-state 2D material. The geometry
of the lattice corresponds to an Archimedean tiling of the plane.
More precisely, it is the �34; 6� or snub hexagonal tiling that
interestingly exists in two chiral variants [22]. The band struc-
ture of the chiral borophene lattice is depicted in Fig. 1(b).
Intriguing features include the pseudospin-1/2 Dirac cones
[23] and the partially flat band [24]. The peculiarity we are
interested in for this work is the conical intersection of five
bands at the degenerate Γ-point shown in the zoom-in of
Fig. 1(c). This fivefold degeneracy has been shown to be pro-
tected by site-permutation symmetries and therefore to be
robust to long-range isotropic interactions such as pth nearest
neighbor hopping for p → ∞ [25].

An experimental photonic lattice realization of chiral boro-
phene would rely on an array of evanescently coupled wave-
guides arranged according to the lattice geometry shown in
Fig. 1(a). The waveguides could be created by either femtosec-
ond direct laser writing [26] or optical induction in a photo-
refractive medium [10]. In this study, we use a numerical
approach that has proven to agree very well with experimental
realizations [11]. In our photonic waveguide model, we apply a
tight-binding approximation as a discrete model describing the
evanescent coupling between lattice sites. Considering only
nearest neighbor coupling, we obtain the following k-space
[k � �kx , ky�] Hamiltonian:

Ĥ k � t

0
BBBBBBBBB@

0 1 e−ia1k e−ia2k e−ia2k 1

1 0 1 e−ia2k eia3k eia3k

eia1k 1 0 1 eia3k eia1k

eia2k eia2k 1 0 1 eia1k

eia2k e−ia3k e−ia3k 1 0 1

1 e−ia3k e−ia1k e−ia1k 1 0

1
CCCCCCCCCA
, (1)

where the lattice vectors are given by a1 � �d∕2�� ffiffiffi
3

p
; 1�,

a2 � d �0,1�, and a3 � a1 − a2, d is the lattice constant,
and t is the coupling strength. Setting d � t � 1 without re-
striction of generality, the eigenvalues of Ĥ give the spectrum
β�k� shown in Fig. 1(b). In our case, the band structure with its

propagation constants β�k� (which describes the rate of phase
evolution in the propagation direction) represents a diffraction
relation describing the spatial evolution dynamics of photonic
wave functions in the lattice. In an atomic borophene lattice,
this corresponds to an energy spectrum describing the temporal
evolution of the electronic wave function.

At the singular Γ-point, a single-band approximation fails. It
is, however, possible to understand complex multi-band effects
by introducing the pseudospin as an analog to a real spin. To
obtain the five pseudospin eigenstates describing the conical
intersection of the chiral borophene lattice, we can proceed ana-
lytically and Taylor expand Ĥ around the singular point [27].
A detailed analytic derivation is presented in Appendix C.
Here, we showcase how to derive the pseudospin eigenstates
intuitively.

We start with exciting six Γ-points at the centers of the six
Brillouin zones surrounding the first one. The resulting inter-
ference of six plane waves is known to give rise to a family of
discrete nondiffracting beams [28]. For six plane waves with a
specific phase relation, resembling a discrete phase vortex, the
nondiffracting fields are periodic with a sixfold symmetry. Five
of these cases lead to the desired pseudospin eigenstates as illus-
trated for the pseudospin eigenstate with jψms�−2i in Fig. 2. For
differently charged discrete phase vortices of the six plane
waves, we obtain the other four eigenstates (see Appendix B).
In the sublattice basis, the normalized eigenstates finally read

jψ−2i �
1ffiffiffi
6

p
�
�1 ei

1
3π ei

2
3π − 1 ei

4
3π ei

5
3π
�
T
,

jψ−1i �
1ffiffiffi
6

p
�
�1 ei

2
3π ei

4
3π � 1 ei

2
3π ei

4
3π
�
T
,

jψ0i �
1ffiffiffi
6

p ��1 − 1 � 1 − 1 � 1 − 1�T ,

jψ�1i �
1ffiffiffi
6

p
�
�1 ei

4
3π ei

2
3π � 1 ei

4
3π ei

2
3π
�
T
,

jψ�2i �
1ffiffiffi
6

p
�
�1 ei

5
3π ei

4
3π − 1 ei

2
3π ei

1
3π
�
T
, (2)

where the six entries represent the complex amplitudes at lattice
sites A to F. jψ−2,−1,0,�1,�2i are all eigenvectors of Ĥ �0,0� for
the eigenvalue β � −1. Together with the eigenvector of the
sixth band, which has a different eigenvalue or propagation

Fig. 1. Chiral borophene lattice and its band structure. (a) Sche-
matic of the lattice with the unit cell in gray and lattice vectors a1,
a2, and a3. The lattice sites are labeled from A to F. (b) Tight-binding
band structure in the hexagonal Brillouin zone, calculated using
d � t � 1 for nearest neighbors only. (c) Zoomed-in view of the
linear dispersion close to the degenerate point showing an idealized
pseudospin-2 conical intersection.

Fig. 2. Derivation of pseudospin eigenstate jψ−2i. (a) Six plane
waves in k-space at the Γ-points surrounding the first Brillouin zone
(dashed red line) forming a hexagonal discrete vortex with l � �1.
The shown isolines of the third (green) band help to identify the exact
k-space excitation. (b), (c) Real space transverse amplitude and phase
profile of the resulting discrete nondiffracting beam with overlaid
chiral borophene lattice.
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constant of β � 5, jψβ�5i � � 1 1 � � � 1 �T , they form an
orthonormal orbital angular momentum basis for the unit cell.
Our intuitive derivation allows obtaining the five pseudospin
eigenstates, although what is still missing is the assignment
to the correct pseudospin value ranging from ms � −2 to
ms � �2. We obtain this directly from the analytical deriva-
tion presented in Appendix C. However, again an intuitive
explanation arises from comparing the phase distributions of
the different pseudospin eigenstates. As can be seen in Fig. 3,
the order relies on a difference in the topological charges of the
microscopic optical phase vortices internal to the unit cell luc:
when we increase the pseudospin by unity from jψ−2i to jψ−1i,
the vorticity is also increased from luc � �1 to luc � �2. The
same happens when going from jψ−1i to jψ0i with luc � �2
increasing to luc � �3. jψ0i plays a crucial role in this process
as the discreteness of its internal topological charge can be re-
garded to have either a positive or negative value of luc � �3.
As a result, from jψ0i to jψ�1i, we again have a unitary increase

from luc � −3 to luc � −2. For the last transition from jψ�1i
to jψ�2i, the relation is once again valid changing from
luc � −2 to luc � −1. At first glance, this ordering may appear
a bit counterintuitive. In particular, one might ask why there is
no 1:1 correspondence between pseudospin and the internal
topological charge in the form ms � luc. The answer is that
the state having luc � 0 has a propagation constant β ≠ −1,
and due to its not being part of the conical intersection, it does
not couple to the other states. This prevents the transition
luc � −1 → luc � 0 → luc � �1, which would be necessary
to go from jψ−1i, over jψ0i to jψ�1i in the case of a direct
correspondence between pseudospin and internal topological
charge.

B. Conical Diffraction and Topological Charge
Conversion
To confirm that chiral borophene indeed hosts a pseudospin-2
conical intersection in its band structure and to validate the de-
rived pseudospin eigenstates, we performnumerical experiments
of light propagation in the lattice (see Appendix A for details on
the numerical methods). The simulations are based on the para-
xial wave equation and are carried out via a standard pseudo-
spectral split-step propagation method [29]. The numerical
parameters are chosen to be within the experimental reach and
match those in previously reported experiments in laser-written
photonic lattices with a refractive index contrast of the wave-
guidesΔn � 1.3 × 10−3, wavelength of λ � 532 nm, and near-
est neighbor waveguide separation of Λ � 18 μm [30,31].

We excite the lattice with a light field given by the pseudo-
spin eigenstate jψ−2i multiplied by a Gaussian envelope with
FWHM � 120 μm, as shown in Figs. 4(a) and 4(b). In
k-space, this corresponds to a Gaussian instead of a point-like
excitation at the conical intersection [Figs. 4(e) and 4(f )]. After
propagation in the lattice for the distance z � 7.12 cm, which
corresponds to four coupling lengths Lc for the chosen param-
eters, we clearly identify the conical diffraction in the output
field as shown in Figs. 4(c) and 4(d). Exactly at the Γ-point, the
Bloch bands become degenerate, and thus a plane wave input
state with an arbitrary pseudospin would be invariant under

Fig. 3. Order of the five pseudospin states for ms increasing from
ms � −2 on the left to ms � �2 on the right. The top row shows the
discrete vorticity in k-space. The bottom row depicts the vortices of the
corresponding discrete nondiffracting fields in real space, and therefore
of the pseudospin eigenstates in the unit cell. The k-space and real
space topological charges increase by unity from left to right. This
is also reflected in the pseudospin value.

Fig. 4. Numerical simulation of conical diffraction and pseudospin-mediated vortex generation in photonic borophene. (a), (b) Amplitude and
phase of the input light field given by the pseudospin state ms � −2 multiplied by a Gaussian envelope. (c), (d) Output after propagation in the
lattice. (e), (f ) Same as (a), (b), but in Fourier space. (g), (h) Same as (c), (d), but in Fourier space. (i), (j) Zoom-in showing one of the spectral
components. (k), (l) Ideal linear superposition of Laguerre–Gaussian modes LG0,0 � LG0,−1 � LG0,−2 � LG0,−3 � LG0,−4 for comparison.
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propagation. However, a finite-sized input beam will excite a
range of wave vectors in the vicinity of the Γ-point. Away from
the Γ-point, the degeneracy is lifted, and thus, in general, ei-
genstates of the pseudospin will not coincide with the Bloch
wave eigenstates of the Hamiltonian. Therefore there will be
a coupling between different pseudospin eigenstates during
propagation at a rate determined by the splitting of the
Bloch waves’ propagation constants. For this coupling between
different pseudospin eigenstates to take place, there has to be
compensation for the difference in their pseudospin values
based on the conservation of total angular momentum. This
compensation leads to topological charge conversion in the
form of optical vortices in the macroscopic phase profiles of
the output fields for the different pseudospin eigenstates. If
we excite the lattice with a pseudospin state min

s , the topological
charges of the vortices present in the decomposed output fields
with pseudospin mout

s follow the relation

l � min
s − mout

s : (3)

Accordingly, the output field in Figs. 4(c) and 4(d) is com-
posed of a superposition of jψ−2,−1,0,�1,�2i with phase vortices
of topological charges l � 0, −1, −2, −3, −4, respectively. To
confirm this hypothesis, we look at the spectral components
by performing a Fourier transform to the fields. In the Fourier
transform, we can see multiple spectral components at the cen-
ters of the higher-order Brillouin zones. While the higher com-
ponents come from the waveguide structure and the degree of
localization of the waveguide modes, we are interested in the
symmetry properties that are fully captured by the six compo-
nents at the centers of the second Brillouin zone. While the
input [Figs. 4(e) and 4(f )] is composed of Gaussian spots at the
center of the Brillouin zones, the output [Figs. 4(g) and 4(h)] is
composed of more complex spots that we can identify as a
superposition of Laguerre–Gaussian modes LG0,0 � LG0,−1 �
LG0,−2 � LG0,−3 � LG0,−4. This is clearly seen by comparing
one of the spectral components in the output [Figs. 4(i) and
4(j)] with an ideal superposition of the Laguerre–Gaussian
modes [Figs. 4(k) and 4(l)]. Crucially, both fields display a
quadruply charged optical phase vortex peculiar for a pseudo-
spin-2 conical intersection resulting from the conservation of
angular momentum going from the pseudospin state jψ−2i
in the input to jψ�2i in the output.

These results already confirm the central message of this
work: demonstrating the existence of a pseudospin-2 conical
intersection with five conically diffracting eigenstates in the lin-
ear spectrum of a chiral borophene lattice and the generation
of highly charged optical vortices. Going beyond the spectral
analysis, we give in the following a more detailed picture of the
propagation dynamics in our photonic lattice close to the spec-
tral singular point. To this aim, we decompose the output
light field into the respective pseudospin components. This sig-
nificantly simplifies the output phase profiles and allows the
underlying mechanisms to be better elucidated. We carry out
the decomposition by projecting the output field shown in
Figs. 4(c) and 4(d), unit cell by unit cell, onto the pseudospin
eigenstates of Eq. (2) [11]. For each unit cell, we obtain five
complex values representing the amplitude and phase of the
respective pseudospin eigenstate (see Appendix A for details).
We represent those values as hexagonal pixels in Fig. 5 for

the jψ−2i output (for the remaining cases see Appendix E).
In the phase profiles of the projections, we obtain optical phase
vortices with topological charges following the relation
l � min

s − mout
s . Of particular interest is the l � −4 phase vor-

tex that arises when projecting onto the pseudospin state jψ�2i,
since it is characteristic for a pseudospin-2 conical intersection.
The phase vortices appear due to conservation of total angular
momentum as the pseudospin value increases stepwise from
ms � −2 to ms � �2 during propagation. To reveal the dy-
namics of this process, we numerically solve the beam propa-
gation in the photonic lattice according to the coupled
differential equations of a discrete tight-binding model. As
shown further in Appendix D, the tight-binding simulations
match the continuous model ones extremely well. We then de-
compose the output field during propagation in the chiral bor-
ophene photonic lattice for different z values. For each step, we
calculate the probability amplitude of the total field for each
pseudospin eigenstate and for the eigenstate of the sixth band
jψβ�5i. Thus, we obtain curves of projection percentages with
respect to the z propagation as depicted in Fig. 6. At z � 0, the
lattice is excited with a light field primarily in the jψ−2i state.
There are also minor components in jψ−1i and jψβ�5i due to
the finite size of the Gaussian envelope. During propagation,
we observe the share of the field in jψ−2i decrease, while se-
quentially the shares in jψ−1i, jψ0i, jψ�1i, and jψ�2i increase.
This shows that the pseudospin gradually increases in the order
presented in Fig. 3 as it converts from ms � −2 to ms � �2,
and that there is no coupling via the state of the sixth band

Fig. 5. Projection of the conical diffraction output field onto the
five pseudospin eigenstates. Each hexagonal pixel represents one unit
cell. (a), (b) Amplitude and phase of the projection onto jψ−2i;
(c), (d) onto jψ−1i; (e), (f ) onto jψ0i; (g), (h) onto jψ�1i; (i), (j) onto
jψ�2i.

Fig. 6. Projection onto pseudospin eigenstates during propagation
and conical diffraction of input state jψ−2i. Percentages of different
pseudospin eigenstates in the total field versus propagation distance
in coupling lengths Lc in the photonic lattice.
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jψβ�5i with luc � 0. This clearly confirms that phase vortices
form to compensate for the difference in internal topological
charge luc between the different pseudospin eigenstates. In this
picture, the explanation of pseudospin–orbit interaction ap-
pears natural. Both are forms of the orbital angular momentum
of light: the first is microscopic and internal to the unit cell,
while the latter is macroscopic in the form of optical phase vor-
tices in the total conically diffracted output field.

3. CONCLUSION

In conclusion, we have studied a novel type of pseudospin-2
state in a photonic chiral borophene lattice at its fivefold conical
intersection. We have numerically studied conical diffraction
with topological charge conversion leading to the formation
of optical phase vortices with topological charge values as high
as l � �4. We are able to unveil this conversion as being the
result of pseudospin–orbit interaction and conservation of total
angular momentum. Moreover, it has been shown that the
underlying mechanism is of topological origin due to a nontri-
vial Berry phase winding and therefore, also persists in systems
where angular momentum is not conserved [32]. Together with
the fact that our numerical studies were carried out in a photonic
analog of an atomic borophene allotrope, this paves the way for
harnessing the unique properties of pseudospin-2 conical inter-
sections in photonic applications such as pseudospin coupling
and the generation of nano-scale higher-charged optical vortices
[33], or scale-invariant lasing [34]. Furthermore, the existence
of two chiral variants of our borophene lattice combined with
their pseudospin-2 conical intersections could provide additional
interesting opportunities, e.g., in bilayer borophene stacking
[23,35] or chiral topological photonics [36].

APPENDIX A: METHODS

1. Numerically Simulated Beam Propagation in the
Lattice
The z propagation of a slowly varying envelope light field
ψ�x, y, z� through a photonic lattice in the paraxial approxima-
tion is well described by the following continuous-model
Schrödinger-type equation [8]:

i
∂
∂z

ψ�x, y, z� �
�
−

1

2k0n0
∇2

⊥ − k0Δn�x, y�
�
ψ�x, y, z�

� Ĥψ�x, y, z�: (A1)

Here n0 is the background refractive index, k0 is the wave-
number in vacuum, ∇⊥ � �∂x , ∂y�, and Δn�x, y� represents the
transverse refractive index change of the photonic lattice. For a
sufficiently small transverse refractive index modulation, solu-
tions to Eq. (A1) can be obtained via the split-step Fourier
transform method [29]. In our numerical simulations, we adapt
the parameters to match previously reported experiments in
laser-written photonic lattices [30,31]. We choose n0 � 1.4
and k0 � 2π∕λ0 with λ0 � 532 nm. The photonic lattice
potential consists of single-mode waveguides with a super-
Gaussian refractive index potential and FWHM � 9 μm,
placed at a waveguide separation of Λ � 18 μm from each
other. The selected potential strength is Δn � 1.3 × 10−3.

For single-mode evanescently coupled waveguides, the tight-
binding approximation is valid, and the continuous Schrödinger
equation can be replaced by a discrete version. From the asso-
ciated Hamiltonian for nearest neighbors only, which is given in
k-space by Eq. (1), we can calculate the band structure. To con-
firm that the tight-binding approximation well describes the dy-
namics in the chiral borophene lattice, we can solve the discrete
version of Eq. (A1) and compare the results with the continuous
model. We do so by numerically solving the N coupled differ-
ential equations resulting from the real space Hamiltonian of a
chiral borophene lattice ofN lattice sites. The solutions obtained
via the ode45 function of MATLAB perfectly match those of the
continuous model (see Fig. 9 in Appendix D).

2. Pseudospin Filtering
To project the conically diffracted output light fields onto the
different pseudospin eigenstates, we consider the tight-binding
limit. As we need to assign one complex amplitude value to
each waveguide of the continuous model, we average over the
area of the waveguide in the output light fields. We apply this
averaging to each lattice site A to F and, for every unit cell
at R � na1 � ma2, we obtain a six-dimensional state vector
jψout

R i. We then calculate the projections of this vector onto the
five pseudospin eigenstates as hψout

R jψ−2,−1,0,�1,�2i, obtaining
five complex amplitudes for each unit cell.

APPENDIX B: INTUITIVE DERIVATION OF
PSEUDOSPIN EIGENSTATES −1, 0, �1, �2

As stated in the main paper, we present an intuitive approach to
derive the pseudospin eigenstates by looking at the family of
nondiffracting beams resulting from the interference of six
plane waves. The derivation of two of the four remaining
eigenstates obtained by different phase relations of the interfer-
ing plane waves is summarized in Fig. 7. For the remaining
eigenstates jψ�1i and jψ�2i, the results are analogous to jψ−1i

Fig. 7. Derivation of the pseudospin eigenstates jψ−1i and jψ0i.
(a1) Six plane waves in k-space forming a hexagonal discrete vortex
with l � �2. (a2), (a3) Real space transverse amplitude and phase
profile of the resulting discrete nondiffracting beam with overlaid chi-
ral borophene lattice for jψ−1i. (b1) Same as in (a1) but with l � �3.
(b2), (b3) Same as in (a2) and (a3) but for jψ0i.
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and jψ−2i albeit with opposing signs of vorticity in k- and real
space. There is also a sixth nondiffracting beam that can be
obtained by the interference of six in-phase plane waves.
However, as shown in Fig. 8, this configuration leads to a
low-index mode in the photonic lattice where the light is con-
centrated in the unmodulated regions of the borophene lattice.
This is not a tight-binding mode, and since it possesses a dif-
ferent propagation constant, it does not belong to the conical
intersection.

APPENDIX C: EFFECTIVE HAMILTONIAN OF THE PSEUDOSPIN-2 CONICAL INTERSECTION

The effective Hamiltonian for pseudospin s conical intersections can be expressed in terms of spin matrices of dimension 2s � 1
satisfying the angular momentum algebra �Ŝi, Ŝj	 � iεi,j,kŜk. To show this is also the case for our chiral borophene lattice, we Taylor
expand the Hamiltonian of Eq. (1) around the Γ-point to the first order. We obtain

Ĥ k � t

0
BBBBBBBBB@

0 1 1 − ia1k 1 − ia2k 1 − ia2k 1

1 0 1 1 − ia2k 1� ia3k 1� ia3k

1� ia1k 1 0 1 1� ia3k 1� ia1k

1� ia2k 1� ia2k 1 0 1 1� ia1k

1� ia2k 1 − ia3k 1 − ia3k 1 0 1

1 1 − ia3k 1 − ia1k 1 − ia1k 1 0

1
CCCCCCCCCA
, (C1)

with k � �kx , ky�, a1 � �d∕2�� ffiffiffi
3

p
; 1�, a2 � d�0,1�, and a3 � a1 − a2. We can change the basis from the sublattice one to the

orbital angular momentum basis by calculating Ĥ 0 � U †ĤU , with the unitary matrix U composed of the normalized pseudospin
eigenstates that have been appropriately phase-shifted:

U � 1ffiffiffi
6

p

0
BBBBBBBBB@

ei
5
3π ei

5
3π 1 ei

4
3π ei

1
3π 1

ei
4
3π −1 −1 1 ei

2
3π 1

−1 ei
1
3π 1 ei

2
3π −1 1

ei
2
3π ei

5
3π −1 ei

4
3π ei

4
3π 1

ei
π
3 −1 1 1 ei

5
3π 1

1 ei
π
3 −1 ei

2
3π 1 1

1
CCCCCCCCCA
: (C2)

Discarding the state jψβ�5i of the sixth band by eliminating the last row and column, we obtain the effective 5 × 5 Hamiltonian

Ĥ eff � t

0
BBBBBBB@

−1 1
2 �kx − iky� 0 0 0

1
2 �kx � iky� −1 1

2 �kx − iky� 0 0

0 1
2 �kx � iky� −1 1

2 �kx − iky� 0

0 0 1
2 �kx � iky� −1 1

2 �kx − iky�
0 0 0 1

2 �kx � iky� −1

1
CCCCCCCA
, (C3)

or in polar coordinates k � �k cos θ, k sin θ�:

Ĥ eff � t

0
BBBBBBB@

−1 1
2
ke−iθ 0 0

1
2 ke

iθ −1 1
2 ke

−iθ 0 0

0 1
2 ke

iθ −1 1
2 ke

−iθ 0

0 0 1
2 ke

iθ −1 1
2 ke

−iθ

0 0 0 1
2 ke

iθ −1

1
CCCCCCCA
, (C4)

whose eigenvalues are independent of the polar angle and have
values of

β1,2,3,4,5 � t�−1 −
ffiffiffi
3

p
k�, t�−1 − k�,

− t , t�−1� k�, t�−1�
ffiffiffi
3

p
k�: (C5)

The spectrum of the effective Hamiltonian is rotationally
symmetric as expected from a conical intersection. For such
a rotationally symmetric spectrum, there is an associated
conserved quantity. In this case, it is the z component of
the total angular momentum Jz � Sz � Lz . We can see this
resulting from �Jz , Ĥ eff 	 � �Sz , Ĥ eff 	 � �Lz , Ĥ eff 	 � 0, with
Lz � −i∂∕∂θ and the spin matrix

Fig. 8. Low-index mode. (a) Six plane waves in k-space without
discrete vortex. (b), (c) Real space transverse amplitude and phase pro-
file of the resulting discrete nondiffracting beam with overlaid chiral
borophene lattice.
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Sz �

0
BBBBBBB@

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

1
CCCCCCCA
: (C6)

The eigenvalues of Sz correspond to the pseudospin values
ms � �2,�1, 0,1, −2, and, as can be seen by transforming the
eigenstates back into the sublattice basis, its eigenstates are
the pseudospins jψ�2i, jψ�1i, jψ0i, jψ−1i, jψ−2i. As men-
tioned, the effective Hamiltonian can be expressed in terms
of spin matrices S � �Sx , Sy� and Sz . With the standard
spin-2 matrices

Sx �
1

2

0
BBBBBBB@

0 2 0 0 0

2 0
ffiffiffi
6

p
0 0

0
ffiffiffi
6

p
0

ffiffiffi
6

p
0

0 0
ffiffiffi
6

p
0 2

0 0 0 2 0

1
CCCCCCCA
, (C7)

Sy �
1

2i

0
BBBBBBB@

0 2 0 0 0

−2 0
ffiffiffi
6

p
0 0

0 −
ffiffiffi
6

p
0

ffiffiffi
6

p
0

0 0 −
ffiffiffi
6

p
0 2

0 0 0 −2 0

1
CCCCCCCA
, (C8)

we get the following expression:

Ĥ eff �k� � c0k · S� c1k · fS, S2zg − tI 5, (C9)

with the anticommutator fS, S2z g � SS2z � S2zS, c0 �
1
24 t�5

ffiffiffi
6

p
− 3�, c1 � 1

24 t�3 −
ffiffiffi
6

p
�, and the identity matrix I 5

representing a shift of the conical intersection towards −t.
The fS, S2zg term in Eq. (C9) allows the control of the relative
opening angle of the two pairs of cones. While in a standard s-2
conical intersection the slope of the inner cone is double that of
the outer cone, in our spectrum, there is a factor of

ffiffiffi
3

p
.

By introducing Sz raising and lowering operators S� �
Sx � Sy, we can recast Eq. (C9) as

Ĥ eff �k, θ� �
c0k
2

�e−iθS� � eiθS−� �
c1k
2

· �e−iθfS�, S2zg � eiθfS−, S2zg� − tI 5: (C10)

From Eq. (C10), we can read that by applying the
Hamiltonian, which equates to propagation in our photonic
lattice, Sz is raised (lowered), while a phase factor of e−iθ

(eiθ) is introduced. This phase factor accounts for the negative
(positive) optical phase vortices created during propagation of a
conically diffracting pseudospin (Sz) eigenstate that couples to
the other eigenstates.

APPENDIX D: COMPARISON BETWEEN
SIMULATIONS IN THE CONTINUOUS MODEL
AND IN THE TIGHT-BINDING MODEL

We want to show that the tight-binding model with only near-
est neighbor coupling describes our photonic lattice well.

To this aim, we compare simulations obtained by solving
the continuous Schrödinger equation via the split-step method
with those obtained by solving the N coupled differential
equations for a lattice of N waveguides. We excite the lat-
tice with the eigenstate jψ−2i with a Gaussian envelope of
FWHM � 120 μm. After propagation in the chiral borophene
lattice for a propagation distance of four coupling lengths Lc ,
the output profiles obtained by the two numerical methods,
as shown in Fig. 9, match extremely well.

APPENDIX E: CONICAL DIFFRACTION AND
TOPOLOGICAL CHARGE CONVERSION OF
PSEUDOSPIN EIGENSTATES −1, 0, �1, �2

The observation of conical diffraction and generation of optical
phase vortices via topological charge conversion between differ-
ent pseudospin eigenstates provided in the main part is already
a complete demonstration of our pseudospin-2 conical intersec-
tion. However, to complete the picture, we repeat the pro-
cedure for all pseudospin eigenstates. The results obtained
after beam propagation simulations of the other four pseudo-
spin eigenstates are shown in Fig. 10. All parameters for the
simulations were kept the same as in the previous part. We
can see that all states diffract conically, although not with
the same expansion rate. This is to be expected since wave pack-
ets with larger pseudospin values expand more slowly [11]. The
output light fields obtained using jψ−1i and jψ�1i as the inputs
are essentially equivalent except for the inverted phase vorticity.

Fig. 9. Comparison of numerical simulations in tight-binding and
continuous models. (a), (b) Amplitude and phase from solving the
tight-binding coupled differential equations. (c), (d) Amplitude and
phase from solving the continuous model via the split-step beam
propagation method.

Fig. 10. Numerically simulated conical diffraction outputs of the
remaining pseudospin eigenstates. (a), (b) Amplitude and phase after
propagation of jψ−1i in the chiral borophene lattice. (c), (d) Same as
(a), (b), but for jψ0i as input. (e), (f ) Same as (a), (b), but for jψ�1i
as input. (g), (h) Same as (a), (b), but for jψ�2i as input.
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The same goes for those obtained, respectively, from jψ−2i
and jψ�2i.

We then proceed and decompose the output fields of Fig. 10
by calculating the projection of them onto the different pseu-
dospin eigenstates unit cell by unit cell. We obtain five pro-
jections for each of the four light fields. All 20 projections
are shown in Fig. 11. We can see that the total angular
momentum Jz is conserved in all cases via the generation of
optical phase vortices having topological charge obeying the
relation l � min

s − mout
s .
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