• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 329 (2021)
Zheng ZHANG, Yan-Hua ZHANG*, Dong-Yue JIN, Wei-Cong NA, and Hong-Yun XIE
Author Affiliations
  • Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.008 Cite this Article
    Zheng ZHANG, Yan-Hua ZHANG, Dong-Yue JIN, Wei-Cong NA, Hong-Yun XIE. RF power performance improvement of multi-finger power bipolar transistor by non-uniform emitter finger spacing design without the use of emitter ballasting resistor[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 329 Copy Citation Text show less
    References

    [1] Zhi JIN, Wei CHENG, Xin-Yu LIU et al. High current, multi-finger InGaAs/InP hetero-structure bipolar transistor with ft of 176GHz. J. Infrared Millim.Waves, 28, 60-64(2009).

    [2] Ao ZHANG, Yi-Xin ZHANG, Bo-Ran WANG et al. An approach to determine small-signal model parameters for InP HBT up to 110 GHz. J. Infrared Millim.Waves, 37, 688-692(2018).

    [3] Wei CHENG, You-Tao ZHANG, Yuan WANG et al. 0.5μm InP DHBT technology for 100 GHz+ mixed signal integrated circuits. J. Infrared Millim.Waves, 36, 167-172(2017).

    [4] Y H Tu, H C Tseng. Alleviation of thermal Instability via novel collector-up HBTs for reliable wireless applications. IEEE Trans. Dev. Mater. Reliab., 19, 189-192(2019).

    [5] L L Spina, V d’Alessandro, S Russo et al. Influence of concurrent electro-thermal and avalanche effects on the safe operating area of multi-finger bipolar transistors. IEEE Trans. Electron. Dev., 56, 483-491(2009).

    [6] J J Liou, L L Liou, C I Huang. Analytical model for AlGaAs/GaAs multiemitter finger HBT including self-heating and thermal coupling effects. IEEE Proc. Circuits Dev. Syst, 141, 469-476(1994).

    [7] G B Gao, M Z Wang, X Gui et al. Thermal design studies of high-power heterojunction bipolar transistors. IEEE Trans. Electron. Dev., 36, 854-863(1989).

    [8] G B Gao, M S Unlu, H Morkoc et al. Emitter ballasting resistor design for, and AlGaAs/GaAs power heterojunction bipolar transistors. IEEE Trans. Electron. Dev., 38, 185-196(1991).

    [9] R P Arnold, D S Zoroglu. A quantitative study of emitter ballasting. IEEE Trans. Electron. Dev, 21, 385-391(1974).

    [10] A Schuppen, S Gerlach, H Dietrich. 1-W SiGe power HBTs for mobile communication. IEEE Microw. Guided Wave Lett., 6, 341-343(1996).

    [11] P A Potyraj, K J Petrosky, K D Hobart. A 230-watt S-band SiGe heterojunction bipolar transistor. IEEE Trans.Microw.Theory Tech., 44, 2392-2397(1996).

    [12] N Jiang, Z Ma, G Wang. 3-W SiGe power HBTs for wireless applications. Mater. Sci. in Semicond. Processing, 8, 323-326(2005).

    [13] Dong-Yue Jin, Wan-Rong Zhang, Pei Shen et al. Multi-finger power SiGe HBTs for thermal stability enhancement over a wide biasing range. Solid-State Electron, 52, 937-940(2008).

    [14] D Y Jin, W R Zhang, P Shen et al. Structure optimization of multi-finger power SiGe HBTs for thermal stability improvement. Microelectron. Reliab, 49, 382-386(2009).

    [15] R Chen, D Y Jin, W R Zhang et al. Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout. Chin. Phys. B, 28, 098502:1-098502:5(2019).

    [16] J J Gao. Heterojunction bipolar transistor for circuit design—microwave modeling and parameter extraction, 207-243(2015).

    Zheng ZHANG, Yan-Hua ZHANG, Dong-Yue JIN, Wei-Cong NA, Hong-Yun XIE. RF power performance improvement of multi-finger power bipolar transistor by non-uniform emitter finger spacing design without the use of emitter ballasting resistor[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 329
    Download Citation