• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 223 (2022)
Qingying FENG, Dong LIU, Ying ZHANG*, Hao FENG, and Qiang LI*
Author Affiliations
  • School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20210164 Cite this Article
    Qingying FENG, Dong LIU, Ying ZHANG, Hao FENG, Qiang LI. Thermodynamic and First-principles Assessments of Materials for Solar-driven CO2 Splitting Using Two-step Thermochemical Cycles [J]. Journal of Inorganic Materials, 2022, 37(2): 223 Copy Citation Text show less
    References

    [1] Y LU, L ZHU, C AGRAFIOTIS et al. Solar fuels production: two-step thermochemical cycles with cerium-based oxides. Prog. Energ. Combust. Sci., 75, 100785(2019).

    [2] J MILLER, A MCDANIEL, M ALLENDORF. Considerations in the design of materials for solar-driven fuel production using metal- oxide thermochemical cycles. Adv. Energy Mater., 4, 1300469(2014).

    [3] Y HAO, W ZOU, R AN. Let the sun shine into a brighter future: an interview with Prof. Aldo Steinfeld. Sci. Bull., 62, 1102-1103(2017).

    [4] S ABANADES, P CHARVIN, G FLAMANT et al. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy, 31, 2805-2822(2006).

    [5] D MARXER, P FURLER, M TAKACS et al. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energ. Environ. Sci., 10, 1142-1149(2017).

    [6] Y HAO, K YANG C, M HAILE S. Ceria-zirconia solid solutions (Ce1-xZrxO2-delta, x≤0.2) for solar thermochemical water splitting: a thermodynamic study. Chem. Mater., 26, 6073-6082(2016).

    [7] S GRIESHAMMER, M MARTIN. Influence of defect interactions on the free energy of reduction in pure and doped ceria. J. Mater. Chem. A, 5, 9241-9249(2017).

    [8] B BULFIN, F CALL, M LANGE et al. Thermodynamics of CeO2 thermochemical fuel production. Energ. Fuel, 29, 1001-1009(2015).

    [9] L MUHICH C, W EVANKO B, C WESTON K et al. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science, 341, 540-542(2013).

    [10] A Al-SHANLITI I, A BAYON, W WEIMER A. Reduction kinetics of hercynite redox materials for solar thermochemical water splitting. Chem. Eng. J., 389, 124429(2020).

    [11] L MUHICH C, D EHRHART B, A WITTE V et al. Predicting the solar thermochemical water splitting ability and reaction mechanism of metal oxides: a case study of the hercynite family of water splitting cycles. Energ. Environ. Sci., 8, 3687-3699(2015).

    [12] H BORK A, E POVODEN-KARADENIZ, L RUPP J. Modeling thermochemical solar-to-fuel conversion: CALPHAD for thermodynamic assessment studies of perovskites, exemplified for (La,Sr)MnO3. Adv. Energy Mater., 7, 1601086(2017).

    [13] M FU, L WANG, T MA et al. Mechanism of CO production around oxygen vacancy of LaMnO3: an efficient and rapid evaluation of the doping effect on the kinetics and thermodynamic driving force of CO2-splitting. J. Mater. Chem. A, 8, 1709-1716(2020).

    [14] L WANG, T MA, S DAI et al. Experimental study on the high performance of Zr doped LaCoO3 for solar thermochemical CO production. Chem. Eng. J., 389, 124426(2020).

    [15] J BARTEL C, R RUMPTZ J, W WEIMER A et al. High-throughput equilibrium analysis of active materials for solar thermochemical ammonia synthesis. ACS Appl. Mater. Inter., 11, 24850-24858(2019).

    [16] A EMERY A, E SAAL J, S KIRKLIN et al. High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater., 28, 5621-3564(2016).

    [17] S GAUTAM G, A CARTER E. Evaluating transition-metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications. Phys. Rev. Mater., 2, 095401(2018).

    [18] B MEREDIG, C WOLVERTOR. First-principles thermodynamic framework for the evaluation of thermochemical H2O- or CO2- splitting materials. Phys. Rev. B, 80, 308-310(2009).

    [19] R SHAH P, T KIM, G ZHOU et al. Evidence for entropy effects in the reduction of ceria-zirconia solutions. Chem. Mater., 18, 5363-5369(2006).

    [20] S NAGHAVI S, A EMERY A, H HANSEN et al. Giant onsite electronic entropy enhances the performance of ceria for water splitting. Nat. Commun., 8, 285(2017).

    [21] M ONG, Q CAMPBELL, I DABO et al. First-principles investigation of BiVO3 for thermochemical water splitting. Int. J. Hydrogen Energ., 44, 1425-1430(2019).

    [22] R MICHALSKY, V BOTU, M HARGUS C et al. Design principles for metal oxide redox materials for solar-driven isothermal fuel production. Adv. Energy Mater., 5, 1401082(2015).

    [23] B GOPAL C, A VAN DE WALLE. Ab initio thermodynamics of intrinsic oxygen vacancies in ceria. Phys. Rev. B, 86, 5505-5511(2012).

    [24] T ZACHERLE, A SCHRIEVER, R A DE SOUZA et al. Ab initio analysis of the defect structure of ceria. Phys. Rev. B, 87, 134104(2013).

    [25] S GRIESHAMMER, T ZACHERLE, M MARTIN. Entropies of defect formation in ceria from first principles. Phys. Chem. Chem. Phys., 15, 15935-15942(2013).

    [26] W CHASE M. NIST-JANAF Thermochemical Tables, 4th Edition. New York: American Institute of Physics, 647-1745(1998).

    [27] H CHENG W, H RICHTER M, I SULLIVAN et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett., 5, 470-476(2020).

    [28] J PANLENER R, N BLUMENTHAL R, E GARNIER J. A thermodynamic study of nonstoichiometric cerium dioxide. J. Phys. Chem. Solids, 36, 1213-1222(1975).

    [29] T KOBAYASHI, S WANG, M DOKIYA et al. Oxygen nonstoichiometry of Ce1- ySmyO2-0.5y-x (y=0.1, 0.2). Solid State Ionics, 126, 349-357(1999).

    [30] L KEATING P R, O SCANLON D, J MORGAN B et al. Analysis of intrinsic defects in CeO2 using a Koopmans-like GGA+U approach. J. Phys. Chem. C, 116, 2443-2452(2012).

    [31] B BULFIN, L HOFFMANN, L DE OLIVEIRA et al. Statistical thermodynamics of non-stoichiometric ceria and ceria zirconia solid solutions. Phys. Chem. Chem. Phys., 18, 23147-23154(2016).

    [32] C DAVENPORT T, K YANG C, J KUCHARCZYK C et al. Implications of exceptional material kinetics on thermochemical fuel production rates. Energy Technol., 4, 764-770(2016).

    [33] C DAVENPORT T, M KEMEI, J IGNATOWICH M et al. Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production. Int. J. Hydrogen Energ., 42, 16932-16945(2017).

    [34] B BULFIN, J LOWE A, A KEOGH K et al. An analytical model of CeO2 oxidation and reduction. J. Phys. Chem. C, 117, 24129-24137(2013).

    Qingying FENG, Dong LIU, Ying ZHANG, Hao FENG, Qiang LI. Thermodynamic and First-principles Assessments of Materials for Solar-driven CO2 Splitting Using Two-step Thermochemical Cycles [J]. Journal of Inorganic Materials, 2022, 37(2): 223
    Download Citation