• Photonics Research
  • Vol. 10, Issue 5, 1210 (2022)
Zheng Sun1、†, Minghui Duan1、†, Yabing Zheng, Yi Jin*, Xin Fan, and Jinjin Zheng
Author Affiliations
  • Department of Precision Machinery and Precision Instruments, University of Science and Technology of China, Hefei 230022, China
  • show less
    DOI: 10.1364/PRJ.451818 Cite this Article Set citation alerts
    Zheng Sun, Minghui Duan, Yabing Zheng, Yi Jin, Xin Fan, Jinjin Zheng. Intensity diffusion: a concealed cause of fringe distortion in fringe projection profilometry[J]. Photonics Research, 2022, 10(5): 1210 Copy Citation Text show less
    References

    [1] F. Chen, G. M. Brown, M. Song. Overview of 3-D shape measurement using optical methods. Opt. Eng., 39, 10-22(2000).

    [2] R. Usamentiaga, J. Molleda, D. F. García. Fast and robust laser stripe extraction for 3D reconstruction in industrial environments. Mach. Vis. Appl., 23, 179-196(2012).

    [3] T. Zhang, J. Liu, S. Liu, C. Tang, P. Jin. A 3D reconstruction method for pipeline inspection based on multi-vision. Measurement, 98, 35-48(2017).

    [4] P. Rodríguez-Gonzálvez, M. Rodríguez-Martín, L. F. Ramos, D. González-Aguilera. 3D reconstruction methods and quality assessment for visual inspection of welds. Autom. Constr., 79, 49-58(2017).

    [5] J. Burke, T. Bothe, W. Osten, C. F. Hess. Reverse engineering by fringe projection. Proc. SPIE, 4778, 312-324(2002).

    [6] G. Sansoni, F. Docchio. Three-dimensional optical measurements and reverse engineering for automotive applications. Robot. Comput.-Integr. Manuf., 20, 359-367(2004).

    [7] J. Hecht, K. Lamprecht, M. Merklein, K. Galanulis, J. Steinbeck. Triangulation based digitizing of tooling and sheet metal part surfaces-measuring technique, analysis of deviation to CAD and remarks on use of 3D-coordinate fields for the finite element analysis. Key Engineering Materials, 344, 847-853(2007).

    [8] K. R. Ford, G. D. Myer, T. E. Hewett. Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med. Sci. Sports Exercise, 39, 2021-2028(2007).

    [9] U. Khan, A. Yasin, M. Abid, I. Shafi, S. A. Khan. A methodological review of 3D reconstruction techniques in tomographic imaging. J. Med. Syst., 42, 192(2018).

    [10] S. S. Gorthi, P. Rastogi. Fringe projection techniques: whither we are?. Opt. Laser Eng., 48, 133-140(2010).

    [11] Z. Wu, W. Guo, Y. Li, Y. Liu, Q. Zhang. High-speed and high-efficiency three-dimensional shape measurement based on gray-coded light. Photon. Res., 8, 819-829(2020).

    [12] S. Feng, C. Zuo, L. Zhang, W. Yin, Q. Chen. Generalized framework for non-sinusoidal fringe analysis using deep learning. Photon. Res., 9, 1084-1098(2021).

    [13] M. Takeda, K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt., 22, 3977-3982(1983).

    [14] J. Zhong, J. Weng. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry. Appl. Opt., 43, 4993-4998(2004).

    [15] L. Huang, Q. Kemao, B. Pan, A. K. Asundi. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Laser Eng., 48, 141-148(2010).

    [16] R. Goldstein, H. Zebker, C. Werner. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci., 23, 713-720(1988).

    [17] D. C. Ghiglia, L. A. Romero. Minimum LP-norm two-dimensional phase unwrapping. J. Opt. Soc. Am. A, 13, 1999-2013(1996).

    [18] T. J. Flynn. Two-dimensional phase unwrapping with minimum weighted discontinuity. J. Opt. Soc. Am. A, 14, 2692-2701(1997).

    [19] R. Bamler, P. Hartl. Synthetic aperture radar interferometry. Inverse Prob., 14, R1(1998).

    [20] X. Su, W. Chen, Q. Zhang, Y. Chao. Dynamic 3-D shape measurement method based on FTP. Opt. Laser Eng., 36, 49-64(2001).

    [21] X. Su, Q. Zhang. Dynamic 3-D shape measurement method: a review. Opt. Laser Eng., 48, 191-204(2010).

    [22] Y. Hu, Q. Chen, S. Feng, C. Zuo. Microscopic fringe projection profilometry: a review. Opt. Laser Eng., 135, 106192(2020).

    [23] V. Srinivasan, H.-C. Liu, M. Halioua. Automated phase-measuring profilometry of 3-D diffuse objects. Appl. Opt., 23, 3105-3108(1984).

    [24] C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, Q. Chen. Phase shifting algorithms for fringe projection profilometry: a review. Opt. Laser Eng., 109, 23-59(2018).

    [25] J. M. Huntley, H. Saldner. Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl. Opt., 32, 3047-3052(1993).

    [26] H. O. Saldner, J. M. Huntley. Temporal phase unwrapping: application to surface profiling of discontinuous objects. Appl. Opt., 36, 2770-2775(1997).

    [27] G. Sansoni, M. Carocci, R. Rodella. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors. Appl. Opt., 38, 6565-6573(1999).

    [28] J. Tian, X. Peng, X. Zhao. A generalized temporal phase unwrapping algorithm for three-dimensional profilometry. Opt. Laser Eng., 46, 336-342(2008).

    [29] Y. Wang, S. Zhang. Novel phase-coding method for absolute phase retrieval. Opt. Lett., 37, 2067-2069(2012).

    [30] C. Zuo, L. Huang, M. Zhang, Q. Chen, A. Asundi. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Laser Eng., 85, 84-103(2016).

    [31] Y. Zheng, Y. Jin, M. Duan, C. Zhu, E. Chen. Joint coding strategy of the phase domain and intensity domain for absolute phase retrieval. IEEE Trans. Instrum. Meas., 70, 7004908(2021).

    [32] M. Zhang, Q. Chen, T. Tao, S. Feng, Y. Hu, H. Li, C. Zuo. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection. Opt. Express, 25, 20381-20400(2017).

    [33] H. Guo, H. He, M. Chen. Gamma correction for digital fringe projection profilometry. Appl. Opt., 43, 2906-2914(2004).

    [34] B. Pan, Q. Kemao, L. Huang, A. Asundi. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Opt. Lett., 34, 416-418(2009).

    [35] T. Hoang, B. Pan, D. Nguyen, Z. Wang. Generic gamma correction for accuracy enhancement in fringe-projection profilometry. Opt. Lett., 35, 1992-1994(2010).

    [36] C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng. High-speed three-dimensional profilometry for multiple objects with complex shapes. Opt. Express, 20, 19493-19510(2012).

    [37] Y. Guan, Y. Yin, A. Li, X. Liu, X. Peng. Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry. Opt. Lett., 39, 3678-3681(2014).

    [38] C. Jiang, S. Xing, H. Guo. Fringe harmonics elimination in multi-frequency phase-shifting fringe projection profilometry. Opt. Express, 28, 2838-2856(2020).

    [39] Y. Wang, S. Zhang. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing. Opt. Lett., 35, 4121-4123(2010).

    [40] C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, X. Sui. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Appl. Opt., 51, 4477-4490(2012).

    [41] W. Lohry, S. Zhang. Genetic method to optimize binary dithering technique for high-quality fringe generation. Opt. Lett., 38, 540-542(2013).

    [42] J. Sun, C. Zuo, S. Feng, S. Yu, Y. Zhang, Q. Chen. Improved intensity-optimized dithering technique for 3D shape measurement. Opt. Laser Eng., 66, 158-164(2015).

    [43] S. Zhang, S.-T. Yau. High dynamic range scanning technique. Opt. Eng., 48, 033604(2009).

    [44] H. Jiang, H. Zhao, X. Li. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces. Opt. Laser Eng., 50, 1484-1493(2012).

    [45] S. Feng, L. Zhang, C. Zuo, T. Tao, Q. Chen, G. Gu. High dynamic range 3D measurements with fringe projection profilometry: a review. Meas. Sci. Technol., 29, 122001(2018).

    [46] V. Suresh, Y. Wang, B. Li. High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device. Opt. Laser Eng., 107, 176-181(2018).

    [47] L. Zhang, Q. Chen, C. Zuo, S. Feng. Real-time high dynamic range 3D measurement using fringe projection. Opt. Express, 28, 24363-24378(2020).

    [48] Z. Sun, Y. Jin, M. Duan, X. Fan, C. Zhu, J. Zheng. 3-D measurement method for multireflectivity scenes based on nonlinear fringe projection intensity adjustment. IEEE Trans. Instrum. Meas., 70, 5012614(2021).

    [49] T. Anna, S. K. Dubey, C. Shakher, A. Roy, D. S. Mehta. Sinusoidal fringe projection system based on compact and non-mechanical scanning low-coherence Michelson interferometer for three-dimensional shape measurement. Opt. Commun., 282, 1237-1242(2009).

    [50] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon., 3, 128-160(2011).

    [51] S. Ma, C. Quan, R. Zhu, L. Chen, B. Li, C. Tay. A fast and accurate gamma correction based on Fourier spectrum analysis for digital fringe projection profilometry. Opt. Commun., 285, 533-538(2012).

    [52] Z. Song, Y. Shing-Tung. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Appl. Opt., 46, 36-43(2007).

    [53] G. A. Ayubi, J. A. Ayubi, J. M. Di Martino, J. A. Ferrari. Pulse-width modulation in defocused three-dimensional fringe projection. Opt. Lett., 35, 3682-3684(2010).

    [54] H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, X. Wang. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement. Opt. Express, 24, 7703-7718(2016).

    [55] J. Briaire, S. Krisch. Principles of substrate crosstalk generation in CMOS circuits. IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 19, 645-653(2000).

    [56] I. Shcherback, O. Yadid-Pecht. Photoresponse analysis and pixel shape optimization for CMOS active pixel sensors. IEEE Trans. Electron. Devices, 50, 12-18(2003).

    [57] I. Shcherback, T. Danov, O. Yadid-Pecht. A comprehensive CMOS APS crosstalk study: photoresponse model, technology, and design trends. IEEE Trans. Electron. Devices, 51, 2033-2041(2004).

    [58] B. K. Kaushik, S. Sarkar. Crosstalk analysis for a CMOS-gate-driven coupled interconnects. IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 27, 1150-1154(2008).

    [59] L. Blockstein, O. Yadid-Pecht. Crosstalk quantification, analysis, and trends in CMOS image sensors. Appl. Opt., 49, 4483-4488(2010).

    [60] I. Djite, M. Estribeau, P. Magnan, G. Rolland, S. Petit, O. Saint-Pe. Theoretical models of modulation transfer function, quantum efficiency, and crosstalk for CCD and CMOS image sensors. IEEE Trans. Electron. Devices, 59, 729-737(2012).

    [61] B. Blanco-Filgueira, P. Lopez, J. B. Roldán. Closed-form and explicit analytical model for crosstalk in cmos photodiodes. IEEE Trans. Electron. Devices, 60, 3459-3464(2013).

    [62] M. Khabir, H. Alaibakhsh, M. A. Karami. Electrical crosstalk analysis in a pinned photodiode CMOS image sensor array. Appl. Opt., 60, 9640-9650(2021).

    [63] X. Su, W. Chen. Fourier transform profilometry: a review. Opt. Laser Eng., 35, 263-284(2001).

    [64] Z. Sun, Y. Jin, M. Duan, Y. Kan, C. Zhu, E. Chen. Discriminative repair approach to remove shadow-induced error for typical digital fringe projection. Opt. Express, 28, 26076-26090(2020).

    Zheng Sun, Minghui Duan, Yabing Zheng, Yi Jin, Xin Fan, Jinjin Zheng. Intensity diffusion: a concealed cause of fringe distortion in fringe projection profilometry[J]. Photonics Research, 2022, 10(5): 1210
    Download Citation