• Photonics Research
  • Vol. 5, Issue 6, B20 (2017)
Li Ge1、2、*
Author Affiliations
  • 1Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA
  • 2The Graduate Center, CUNY, New York, New York 10016, USA (li.ge@csi.cuny.edu)
  • show less
    DOI: 10.1364/PRJ.5.000B20 Cite this Article Set citation alerts
    Li Ge. Constructing the scattering matrix for optical microcavities as a nonlocal boundary value problem[J]. Photonics Research, 2017, 5(6): B20 Copy Citation Text show less
    References

    [1] R. K. Chang, A. J. Campillo. Optical Processes in Microcavities(1996).

    [2] K. J. Vahala. Optical Microcavities(2004).

    [3] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [4] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature (London), 385, 45-47(1997).

    [5] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho. High-power directional emission from microlasers with chaotic resonators. Science, 280, 1556-1564(1998).

    [6] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [7] J. A. Wheeler. On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev., 52, 1107-1122(1937).

    [8] E. P. Wigner, L. Eisenbud. Higher angular momenta and long range interaction in resonance reactions. Phys. Rev., 72, 29-41(1947).

    [9] Y. Nagashima. Scattering Matrix, in Elementary Particle Physics: Quantum Field Theory and Particles, 1(2010).

    [10] M. E. Peskin, D. V. Schroeder. An Introduction to Quantum Field Theory(1995).

    [11] C. W. J. Beenakker. Random-matrix theory of quantum transport. Rev. Mod. Phys., 69, 731-808(1997).

    [12] R. G. Newton. Scattering Theory of Wave and Particles(2002).

    [13] R. H. Dicke. A computational method applicable to microwave networks. J. Appl. Phys., 18, 873-878(1947).

    [14] G. Gamow. Zur quantentheorie des atomkernes. Z. Phys., 51, 204-212(1928).

    [15] A. M. Lane, R. G. Thomas. R-matrix theory of nuclear reactions. Rev. Mod. Phys., 30, 257-353(1958).

    [16] G. Breit. Scattering matrix of radioactive states. Phys. Rev., 58, 1068-1074(1940).

    [17] P. L. Kapur, R. Peierls. The dispersion formula for nuclear reactions. Proc. R. Soc. A, 166, 277-295(1938).

    [18] H. E. Türeci, A. D. Stone, B. Collier. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A, 74, 043822(2006).

    [19] C. Bloch. Une formulation unifièe de la théorie des réactions nucléaires. Nucl. Phys., 4, 503-528(1957).

    [20] R. Szmytkowski, J. Hinze. Convergence of the non-relativistic and relativistic R-matrix expansions at the reaction volume boundary. J. Phys. B, 29, 761-777(1996).

    [21] P. Yang, K. N. Liou. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A, 13, 2072-2085(1996).

    [22] T. Shibata, T. Itoh. Generalized-scattering-matrix modeling of waveguide circuits using FDTD field simulations. IEEE Trans. Microwave Theory Tech., 46, 1742-1751(1998).

    [23] D. N. Pattanayak, E. Wolf. Scattering states and bound states as solutions of the Schrodinger equation with nonlocal boundary conditions. Phys. Rev. D, 13, 913-923(1976).

    [24] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 5, 53-60(2003).

    [25]

    [26] S. F. Liew, L. Ge, B. Redding, G. S. Solomon, H. Cao. Controlling a microdisk laser by local refractive index perturbation. Appl. Phys. Lett., 108, 051105(2016).

    [27] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).

    [28] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians naving PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [29] C. M. Bender, S. Boettcher, P. N. Meisinger. PT-symmetric quantum mechanics. J. Math. Phys., 40, 2201-2229(1999).

    [30] C. M. Bender, D. C. Brody, H. F. Jones. Complex extension of quantum mechanics. Phys. Rev. Lett., 89, 270401(2002).

    [31] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [32] S. Klaiman, U. Gunther, N. Moiseyev. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett., 101, 080402(2008).

    [33] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, D. N. Christodoulides. Optical solitons in PT periodic potentials. Phys. Rev. Lett., 100, 030402(2008).

    [34] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [35] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity-time symmetry in optics. Nat. Phys., 6, 192-195(2010).

    [36] S. Longhi. PT-symmetric laser absorber. Phys. Rev. A, 82, 031801(2010).

    [37] Y. D. Chong, L. Ge, A. D. Stone. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett., 106, 093902(2011).

    [38] L. Ge, Y. D. Chong, A. D. Stone. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A, 85, 023802(2012).

    [39] P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, S. Rotter. Breaking of PT symmetry in bounded and unbounded scattering systems. Phys. Rev. X, 3, 041030(2013).

    [40] L. Ge, A. D. Stone. Parity-time symmetry breaking beyond one dimension: the role of degeneracy. Phys. Rev. X, 4, 031011(2014).

    [41] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 106, 213901(2011).

    [42] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel. Parity-time synthetic photonic lattices. Nature (London), 488, 167-171(2012).

    [43] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, A. Scherer. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater., 12, 108-113(2013).

    [44] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Singlemode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [45] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [46] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [47] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time symmetric microring lasers. Science, 346, 975-978(2014).

    [48] L. Ge, K. G. Makris, D. N. Christodoulides, L. Feng. Scattering in PT- and RT-symmetric multimode waveguides: Generalized conservation laws and spontaneous symmetry breaking beyond one dimension. Phys. Rev. A, 92, 062135(2015).

    [49] L. Ge. Steady-state ab initio laser theory and its applications in random and complex media(2010).

    [50] H. A. Haus. Waves and Fields in Optoelectronics, 56-61(1984).

    [51] R. E. Collin. Field Theory of Guided Waves(1960).

    [52] L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media(1960).

    [53] L. Ge, Y. D. Chong, A. D. Stone. Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A, 82, 063824(2010).

    [54] L. Ge, L. Feng. Optical-reciprocity-induced symmetry in photonic heterostructures and its manifestation in scattering PT-symmetry breaking. Phys. Rev. A, 94, 043836(2016).

    [55] S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer. Modular recursive Greens function method for ballistic quantum transport. Phys. Rev. B, 62, 1950-1960(2000).

    [56] H. E. Türeci, L. Ge, S. Rotter, A. D. Stone. Strong interactions in multimode random lasers. Science, 320, 643-646(2008).

    [57] Y. D. Chong, L. Ge, H. Cao, A. D. Stone. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett., 105, 053901(2010).

    [58] P. C. Waterman. Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805-812(1965).

    [59] D. Maystre, K. Yasumoto, S. Enoch, G. Tayeb. Scattering Matrix Method Applied to Photonic Crystals(2010).

    [60] M. G. Moharam, E. B. Grann, D. A. Pommet. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068-1076(1995).

    [61] L. Ge. Symmetry-protected zero-mode laser with a tunable spatial profile. Phys. Rev. A, 95, 023812(2017).

    CLP Journals

    [1] Li Ge, Liang Feng, Harald G. L. Schwefel. Optical microcavities: new understandings and developments[J]. Photonics Research, 2017, 5(6): OM1

    Li Ge. Constructing the scattering matrix for optical microcavities as a nonlocal boundary value problem[J]. Photonics Research, 2017, 5(6): B20
    Download Citation