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We develop a numerical scheme to construct the scattering (S) matrix for optical microcavities, including the
special cases with parity-time and other non-Hermitian symmetries. This scheme incorporates the explicit form of
a nonlocal boundary condition, with the incident light represented by an inhomogeneous term. This approach
resolves the artifact of a discontinuous normal derivative typically found in theR-matrix method. In addition, we
show that, by excluding the aforementioned inhomogeneous term, the non-Hermitian Hamiltonian in our
approach also determines the Periels–Kapur states, and it constitutes an alternative approach to derive the stan-
dardR-matrix result in this basis. Therefore, our scheme provides a convenient framework to explore the benefits
of both approaches. We illustrate this boundary value problem using 1D and 2D scalar Helmholtz equations.
The eigenvalues and poles of the S matrix calculated using our approach show good agreement with results
obtained by other means. © 2017 Chinese Laser Press
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1. INTRODUCTION

Driven by advances in nanofabrication capabilities and their
applications to integrated optics, understanding resonances
and wave transport in optical microcavities [1,2] has been
one of the most energized subjects in modern optics. These
compact optical structures also offer a unique opportunity to
study non-Hermitian phenomena [3] and wave chaos [4,5]
in a well-controlled manner. To probe these properties of
optical microcavities, one approach resorts to the scattering (S)
matrix formalism [6], which was an essential tool in the under-
standing of resonances in nuclear physics [7,8], particle physics
[9], and quantum field theory [10], which also played a crucial
role in the study of wave transport in various fields, including
condensed matter systems [11], optics [12], and microwave
networks [13].

In essence, the S matrix, denoted by an energy- or
frequency-dependent S�ω�, connects a set of incoming chan-
nels Ψ− to their corresponding outgoing channels Ψ�, both
defined outside the scattering potential. Therefore, it takes
the openness of the system into account, and the conservation
of optical flux in the absence of gain and loss is manifested by
the unitarity of S�ω� [i.e., S�ω�S†�ω� � 1]. When S�ω� is
analytically continued into the complex-ω plane, its poles
(i.e., where its eigenvalues approach infinity) correspond to

the resonances of the system, whose wave functions only con-
nect to the outgoing channels, now also evaluated at complex
frequencies [14].

As already pointed out byWigner and Eisenbud’s early work
in nuclear physics [8], the calculation of the S matrix can be
understood as a nonlocal boundary value problem (BVP),
which was derived using an orthogonal basis of the system
and explicitly contains the real-valued frequencies of this basis.
More specifically, this orthogonal basis was defined with van-
ishing normal derivatives at the boundary of the system, and, as
a result, the expansion of an arbitrary state Ψ using a finite
number of these basis functions has a discontinuous normal
derivative in general as an artifact [8,15]. Alternatively, the
expansion can be carried out using quasinormal modes [16]
(i.e., the Gamow states [14]) or the Periels–Kapur states
[17,18], both defined with purely outgoing boundary condi-
tions. These approaches, however, do not remove the artifact
in the normal derivative, due to the lack of incoming flux that
is inherent in the scattering process. We note that in literature
the modal expansion approach, regardless of the specific basis,
is referred to as the R-matrix method [15] in general.

Although the consequence of the aforementioned artifact
may be insignificant with the introduction of the Bloch oper-
ator [19] and a large number of basis functions [20], having an
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approach at one’s disposal that addresses this conceptual
problem may prove valuable in some cases. In addition, it is
often favorable in optical systems to adopt a self-contained
approach, i.e., without requiring a priori knowledge or
assigning phenomenological parameters to a large set of basis
functions. These two goals can be met in principle by using
either time-dependent numerical simulations of the Maxwell’s
equations [21,22] or boundary integral equations [23–25].
However, the former do not offer much physical insight on
the properties of the S matrix, and the latter require that
the Green’s function is known inside the optical microcavity
and hence do not apply, for example, when the refractive index
varies smoothly due to a localized thermal source [26] or a
modulated optical gain and loss profile [27]. We also note that,
while boundary integral equations can be regarded as a nonlocal
boundary condition (and related to the Ewald–Oseen extinc-
tion theorem [23]), they typically involve solving for the
wave function and its normal derivative simultaneously at the
boundary [24].

To overcome these limitations, we propose a finite-
difference approach in this paper that solves for the steady state
of the Maxwell’s equations inside a last scattering surface (LSS),
outside of which the scattered flux does not reenter other parts
of the system. As we will show in Section 1, accomplishing the
two aforementioned goals in 1D is effortless because the boun-
dary conditions are local and involve only the wave function
and its spatial derivative at either end of the system. In higher
dimensions, however, a local boundary condition in the form
f �Ψ�x; k�;∇Ψ�x; k�� � 0 that holds for all x’s on the LSS does
not exist in general. Instead, we use a nonlocal boundary con-
dition f �Ψ�x; k�; RLSS dx 0O�x; x 0�Ψ�x 0; k�� � 0 in its finite
difference form, resulting in (1) a self-contained scheme to con-
struct the S matrix without using a modal expansion that (2)
resolves the artifact in the normal derivative at the LSS. In
addition, this approach via a nonlocal BVP produces the
same non-Hermitian Hamiltonian that determines the Periels–
Kapur states [17] [or constant-flux (CF) states [18] for the
Maxwell’s equations specifically], which constitutes an alterna-
tive approach to derive the standard R-matrix result in this
basis. Hence our scheme provides a convenient framework
to explore the benefits of both approaches when constructing
and comprehending the S matrix.

This paper is organized as follows: In Section 2 we discuss
the BVP and R-matrix approaches in 1D using the scalar
Helmholtz equation. Despite the simplicity of the boundary
conditions, the discussion already reveals the fundamental
connection between the S matrix and the CF states in our ap-
proach. We also explicitly show that the (normal) derivative of
an arbitrary scattering state cannot be accurately captured by
theR-matrix approach with a finite number of basis functions.
In Section 3 we exemplify the nonlocal BVP approach for
the scattering of TM waves in 2D, and the treatment of TE
waves is similar. We then apply this scheme to parity-time
(PT ) [27–47] and rotation-time (RT ) symmetric [40,48]
optical microcavities, focusing on the spontaneous symmetry
breaking of the S-matrix eigenvalues. Finally, we give conclud-
ing remarks in Section 4.

2. BVP IN 1D

We begin by considering the 1D Helmholtz equation

�∂2x � ε�x�k2�Ψ�x; k� � 0; (1)

where Ψ�x; k� is the electric field, ε�x� is the dielectric constant
for an optical microcavity placed between −L∕2 and L∕2, and
k is the free-space wave vector. For an incoming wave from
the left {denoted byΨ−

L�x; k� ≡ exp�ik�x � L∕2��}, we write the
formal solution of Ψ�x; k� as

Ψ�x; k� �
(
Ψ−

L � rLΨ�
L ; �x < −L∕2�

tLΨ�
R ; �x > L∕2� ; (2)

where Ψ�
L;R ≡ exp��ik�x 	 L∕2�� are the outgoing wave func-

tions on the left and right of the system and r, t are the reflec-
tion and transmission coefficients. By requiring that both
Ψ�x; k� and ∂xΨ�x; k� are continuous at x � �L∕2 (denoted
by …jL;R), the boundary conditions are then simply

∂xΨjL � ik�2 −ΨjL�; (3)

∂xΨjR � ikΨjR ; (4)

by eliminating rL and tL, which are local without involving
both ∂xΨjL;R or ΨjL;R in a single expression.

Before we embark on our quest to higher dimensions, we
note an important feature of Eq. (3): without the constant term
2ik, the boundary conditions become the same as those im-
posed by the CF states [18], i.e., with purely outgoing waves.
Similarly, an incoming wave Ψ−

R ≡ exp�−ik�x − L∕2�� from the
right simply adds an additional constant term −2ik in Eq. (4).
Therefore, starting from the non-Hermitian Hamiltonian that
determines the (outgoing) CF states in the interior of the
system, one can obtain the wave function in the scattering
problem by turning an eigenvalue problem to an inhomo-
geneous equation. Below we give the specific forms of this
non-Hermitian Hamiltonian H and the inhomogeneous term
F using the finite-difference method.

To start, we discretize the 1D space into N � 2 equally
spaced points, with the left (right) boundary of the optical mi-
crocavity placed at the middle of the 0th and 1st [N th and
�N � 1�th] points. The separation of two neighboring grid
points is then given by Δ � L∕N, and the Helmholtz equation
takes the following form:

1

Δ2 �Ψi�1 − 2Ψi �Ψi−1� � εik2Ψi � 0; (5)

where Ψi ; εi�i � 1; 2;…; N � are the values of the wave func-
tion and the dielectric constant at these points. The boundary
conditions in Eqs. (3) and (4) can be rewritten as

Ψ0 �
2� iq
2 − iq

Ψ1 � η; (6)

ΨN�1 �
2� iq
2 − iq

ΨN ; (7)

where q ≡ kΔ is dimensionless. The constant term η ≡
−4iq∕�2 − iq� in Eq. (6) is due to the incoming wave Ψ−

L,
as mentioned previously, and by dropping it we recover the

Research Article Vol. 5, No. 6 / December 2017 / Photonics Research B21



generalized eigenvalue problem that determines the CF states
with purely outgoing boundary condition [49]:

Hψm � −q2mεψm: (8)

ψm is a column vector containing the values Ψi in the mth CF
state, and ε is a diagonal matrix with elements εi. The CF
frequencies (similar to the resonances or the poles of the S
matrix) is given by km � qm∕Δ. Note that the real-valued
free-space wave vector k, instead of the complex-valued CF
frequencies km’s, appears in the N × N non-Hermitian
Hamiltonian H :

Hij �
�
−2� 2� iq

2 − iq
�δi;1 � δi;N �

�
δij � �δi�1;j � δi−1;j�; (9)

which is tri-diagonal. We note that it is not possible to write the
corresponding equation for resonances as such a generalized
eigenvalue problem because H would contain the complex-
valued resonance frequencies yet to be determined.

Now with the constant term η in the boundary condition in
Eq. (6), the wave function in the scattering problem is given by

HΨ� F � −q2εΨ; (10)

and the inhomogeneous term F is a column vector with a single
non-zero element, i.e., F 1 � η when light is incident from the
left. Similarly, for the scattering of a right-incident wave, the
only non-zero element of F is FN � η. The equation above
can be put into a more explicit form to obtain Ψ:

Ψ � −�H � q2ε�−1F : (11)

The transmission and reflection coefficients can then be
calculated using

rL �
2Ψ1 − �2� iq�

2 − iq
; tL �

2ΨN

2 − iq
; (12)

for left incidence (and similarly for right incidence), and the S
matrix is given by

S �
�
rL tL
tR rR

�
; (13)

with tL � tR when the system has Lorentz reciprocity [50–52].
For comparison, here we also discuss the modal expansion

approach to construct S. By inserting Ψ � P
mamψm to

Eq. (10) and utilizing Eq. (8), we find

Ψ � −
Δ
L

X
m

ψmψT
m

q2 − q2m
F ; (14)

where we have used the “self-orthogonality” of the CF states
[53] in the following form:

ψT
mεψn �

L
Δ
δm;n: (15)

For left incidence and taking Δ → 0, we find

ψ�x� � −η

ΔL

X
m

ψm�x�ψm�0�
k2 − k2m

� 2ik
L

X
m

ψm�x�ψm�0�
k2 − k2m

: (16)

This expression is identical to that used in the standard
derivation of the R-matrix method in the CF basis, which
we outline below.

As mentioned in the introduction, the expansion of ψ in a
finite number of basis functions introduces an artifact to the
normal derivative at the LSS. Therefore, the standard deriva-
tion of the R-matrix method resorts to the Green’s theorem
instead to take into consideration the boundary condition of
ψ , resulting in

am � 1

L

Z
L

0

εψmΨdx �
1

L
�Ψ∂xψm − ψm∂xΨ�L0

k2 − k2m
: (17)

We note that the scattered waves in Ψ, as well as the CF
states, produce −ik (ik) at x � 0 (L) after taking the derivative,
and the corresponding boundary terms above are all canceled.
Hence, we find �Ψ∂xψm − ψm∂xΨ�L0 � −�Ψ−

L�0�∂xψm�0�−
ψm�0�∂xΨ−

L�0�� � 2ikψm�0�, with which we immediately
recover Eq. (16). Once ψm’s and qm’s are known, the S matrix
can be constructed again by applying Eq. (12) and the corre-
sponding expressions for rR, tR .

In Fig. 1(a) we show the total wave function inside a half-
gain-half-loss optical microcavity with PT symmetry [28–30]
and a left incident wave, whose refractive index satisfies
n�−x� � n
�x� [27,31–48]. Good agreement between Ψ’s
given by Eqs. (11) and (14) are obtained using 50 CF states.
Nevertheless, the artifact of ∂xΨ at the boundary of the micro-
cavity in the R-matrix approach can be readily seen in
Fig. 1(b), where we plot the optical flux given by Im�Ψ
∂xΨ�
(up to a prefactor). The BVP approach, on the other hand,
gives a good agreement with the analytical result [54]

Im�Ψ
∂xΨ�L � k�1 − jrLj2�; rL �
G� iF

D
; (18)

where G ≡ qs1s2, F ≡ u1s1c2 � u2s2c1, D ≡ c1c2 − gs1s2−
i�h1s1c2 � h2s2c1�, and q � �n1∕n2 − n2∕n1�∕2, sj �
sin�njkL∕2�, cj � cos�njkL∕2�, uj � �nj − 1∕nj�∕2, g �
�n1∕n2 � n2∕n1�∕2, hj � �nj � 1∕nj�∕2�j � 1; 2�.

3. NONLOCAL BVP IN 2D

In this section, we elucidate how the S matrix is constructed in
our scheme as a nonlocal BVP in 2D. Similar to the 1D case
discussed in the previous section, we show that the non-
Hermitian Hamiltonian H in our approach is also the one that
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-0.5
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* ∂ xΨ
|

)b()a(
gain loss

Fig. 1. (a) Total wave function and (b) its flux depicted by black
thick lines for a half-gain-half-loss microcavity with light incident from
the left. The wave vector k � 12∕L and refractive indices n1 � n
2 �
2 − 0.2i are used. The expansion in Eq. (14) with 50 CF states is plot-
ted by the red thin lines as a comparison, which can barely be distin-
guished from the black line in (a) but shows a significant deviation near
the left boundary in (b). The black dot in (b) shows the analytical
result at x � −L∕2 given by Eq. (18).
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determines the CF states with a purely outgoing boundary
condition.

A. Construction of the S Matrix
Before we proceed, we note that, in the calculation of a CF state
or a resonance, one basically assumes a homogenous source
residing inside an optical microcavity, reflected by the imagi-
nary part of its complex frequency. In a scattering problem,
the source is an external one instead, and one needs to find
a way to distinguish in the boundary condition the known
incident wave and the unknown scattered waves. In the 1D
case shown in the previous section, the incident wave adds
an inhomogeneous term (i.e., F ) to the non-Hermitian eigen-
value problem that determines the outgoing CF states [c.f.
Eqs. (8) and (10)]. This separation of incident and outgoing
waves holds even when the boundary condition becomes non-
local in 2D, as we show below.

To illustrate this property, we again consider the scalar
Helmholtz equation and use the polar coordinates. A circular
LSS of radius R encloses the optical microcavity with dielectric
constant ε�x� (see Fig. 2), outside of which we assume
ε�x� � n2e > 1 and adopt

Ψ−
m � H −

m�nekr�
H −

m�nekR�
eimθ; Ψ�

m � H�
m �nek
r�

H�
m �nek
R�

eimθ; (19)

as our incoming and outgoing channels. Here H�
m are the

second and first Hankel functions andm is the angular momen-
tum number, which also serves as the channel index. Note that
we do not restrict the free-space wave vector k to be real, which
enables the calculation of the resonances as the complex-valued
poles of the S matrix.

Suppose the incident wave impinges on the LSS in the m0th
channel Ψ−

m0
. The total field and its radial derivative outside

the LSS can then be written as

Ψ> � Ψ−
m0

�
X
m

Sm;m0
Ψ�

m ; (20)

∂Ψ>

∂r
� V −

m0
�r�eim0θ �

X
m
Sm;m0

V �

m �r�eimθ; (21)

where V 	
m �r� ≡ nekH	0

m �nekr�∕H	
m �nekR�. Next we discretize

the 2D space on a polar grid [55], with the circular LSS placed
at the middle of the Nrth and �Nr � 1�th rings (see Fig. 2).
On each ring, there are N θ equally spaced grid points with
spacing Δθ � 2π∕N θ. We then write the total field on the
Nr th and �Nr � 1�th rings as

ΨN r ;ν �
X
m

bmeimθν ; (22)

ΨN r�1;ν �
X
m

bm�1� cmΔr�eimθν ; (23)

where ν is the index for the grid points in the azimuthal direc-
tion, θν is the corresponding azimuthal angle, and Δr is the
uniform spacing between two consecutive grid points in the
radial direction.

To derive the nonlocal boundary condition and the S ma-
trix, we eliminate the two coefficients bm, cm in the example of

TM polarization (with the electric field perpendicular to the
2D cavity plane), and the case of TE polarization can be treated
in a similar fashion. Using the continuity of both Ψ and its
radial derivative, the left-hand sides of Eqs. (20) and (21)
on the LSS can be approximated by

ΨN r�1;ν � ΨN r ;ν

2
�

X
m

bm

�
1� cmΔr

2

�
eimθν ; (24)

ΨN r�1;ν −ΨN r ;ν

Δr
�

X
m
bmcmeimθν ; (25)

which lead to

Sm;m0
� bmcm − V −

m0
δm;m0

V �

m

; (26)

Sm;m0
� bm

�
1� cm

Δr

2

�
− δm;m0

; (27)

and we have dropped the argument R in V 	
m . The product

bmcm can be eliminated to derive a more concise form of
the S matrix:

Sm;m0
�

bm −
�
1 − V −

m0

Δr
2

�
δm;m0

1 − V �

m

Δr
2

: (28)

This is the expression we will use in our numerical examples,
which requires obtaining bm using the Fourier transform of
ΨNr ;ν’s:

bm �
X
ν

Δθ

2π
e−imθνΨN r ;ν: (29)

To find ΨN r ;ν, we eliminate Sm;m0
in Eqs. (26) and (27) and

derive an expression for bmcm, which when substituted into
Eq. (23) gives our nonlocal scattering boundary condition:

ΨN r�1;ν �
X
ν 0

Oν;ν 0ΨN r ;ν 0 � f �m0�
ν ; (30)

(Nr+1)th ring
ε(x)

Nrth ring

Fig. 2. Schematic of an optical microcavity (shaded area) and the
circular LSS (solid line) in 2D. The finite-difference grid is indicated
by the dots and dashed lines.
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Oν;ν 0 ≡
Δθ

2π

X
m

H�
m �nek
R��

H�
m �nek
R−� e

im�θν−θν 0 �; (31)

f �m0�
ν � �V −

m0
− V �


m0
�Δr

1 − V �

m0

Δr
2

eim0θν ; (32)

where R− is the radius of the Nrth ring. Note that the term
f �m0�
ν in Eq. (30) is the manifestation of the incoming wave,

and by dropping it we again recover the (nonlocal) outgoing
boundary condition that defines the CF states [56], similar
to Eq. (6) in 1D.

Equation (30) can then be inserted into the discretized
Helmholtz equation on the N th ring to eliminate ΨN r�1;ν
[49], which gives rise to the following matrix equation:

�H � k2ε�ψ � F �m0� � 0: (33)

The column vector ψ ≡
ffiffi
r

p
Ψ represents the total wave

function, i.e.,

ψ � �ψ1;1…ψ1;N θ
ψ2;1…ψN r ;1…ψN r ;N θ

�T (34)

and F �m0� is a column vector of zeros except for the last N θ el-
ements, which are given byRf �m0�

ν ∕� ffiffiffiffiffi
R−

p
Δ2

r ��ν� 1;2;…;N θ�.
ε has the same form as its 1D counterpart, i.e., a diagonal matrix
with the values of the dielectric constant on the discretized grid.
H has �Nr × N θ� rows and columns; it is the same non-
Hermitian Hamiltonian that determines the CF states [49,56]:

Hψn � −k2nεψn; (35)

and it consists a bandedmatrixH 0 and a �N θ × N θ� blockH 0 in
the lower right corner. H 0 is symmetric with nonzero elements
on the 0, 	1, and 	N θ diagonals8>><

>>:
H �μ−1�N θ�ν;�μ−1�N θ�ν � − 2

�Δr �2 −
2

�rμΔθ�2
H �μ−1�N θ�ν;�μ−1�N θ�ν�1 � 1

�rμΔθ�2

H �μ−1�N θ�ν;μN θ�ν � rμ�1
2

�Δr�2 ffiffiffiffiffiffiffiffiffirμrμ�1
p

; (36)

and H 0 comes from the nonlocal boundary condition in
Eq. (30):

H 0
ν;ν 0 � 1

�Δr�2
R
R− Oν;ν 0 : (37)

H 0 can be checked to be also symmetric using H�
−m�z� �

�−1�mH�
m �z� and the definition of Oν;ν 0 in Eq. (30). Once ψ

is obtained for each incoming channel by solving Eq. (33), i.e.,

ψ � −�H � k2ε�−1F �m0�; (38)

as in the 1D case, we immediately know the Fourier coefficients
fbmg from Eq. (29), with which the construction of the S matrix
is completed using Eq. (28).

In the limit of a fine grid (Δr → 0), Eq. (28) becomes

Sm;m0
!Δr→0

bm − δm;m0
: (39)

We note that the second term in this expression does not de-
pend on the dielectric constant inside the LSS; hence it can be
regarded as the result of a “direct scattering” process [6]. The
first term then corresponds to the “resonance-assisted” scatter-
ing process, and, to understand its determining factors, we
resort to the modal expansion of ψ in the CF basis, which takes
the following form in 2D:

ψ � −
ΔrΔθ

πR2

X
n

ψnψT
n

k2 − k2n
F �m0�: (40)

Note that we have used the following normalization of the
CF basis

ψT
n εψn 0 � πR2

ΔrΔθ
δn;n 0 ; (41)

such that Ψn ≡ ψn∕
ffiffi
r

p
is dimensionless, and its value does not

scale with the discretization, i.e., the expression above becomesZ
system

εΨnΨn 0rdrdϕ � πR2δn;n 0 (42)

in the continuous limit.
ψ given by Eq. (40) has the typical resonant denominator

with kn’s being the CF frequencies. If we project each CF state
at the LSS onto the outgoing channel function Ψ�

m (which is
equivalent to a Fourier transform), i.e.,

Ψnjr�R �
X
m

z�n�m Ψ�
m jr�R �

X
m

z�n�m eimθ; (43)

the inner product ψT
n F �m0� singles out the m0th Fourier coef-

ficient zm0
:

ψT
n F �m0� � 2R

ΔrΔθ
�V −

m0
− V �


m0
�z�n�m0 ; (44)

and, consequently,

Sm;m0
!Δr→0 2

R
�V �


m0
− V −

m0
�Rm;m0

− δm;m0
; (45)

where

Rm;m0
�

X
n

z�n�m z�n�m0

k2 − k2n
(46)

is the R matrix [15]. This expression clearly indicates that the
contribution of a particular CF state to the scattering process is
not only dependent on the resonant denominator; it also de-
pends on the spatial overlaps between this CF state and the
incoming and outgoing channels at the LSS, represented by
z�n�m0 and z�n�m , respectively. In the simplest example where the
system is isotropic and the angular momentum is a good quan-
tum number (e.g., a circular microdisk cavity), only the CF
states with the same angular momentum as the incoming
(and outgoing) channel contribute to the scattering process.

To show that Sm;m0
given by Eq. (45) is consistent with the

standard R-matrix result in the CF basis, we apply the Green’s
theorem to the interior of the LSS, which gives us

an �
1

πR2

Z
system

εΨnΨdx

� 1

πR

R
LSS �Ψ∂rΨn −Ψn∂rΨ�Rdθ

k2 − k2n
: (47)

Similar to the 1D case, the outgoing channels are cancelled
in the boundary integral, which can be proved rigorously by
applying the Green’s theorem again to the exterior of the system,
where both Ψ and ψn satisfy

�∇2 � n2e k2�X � 0; X � Ψ;Ψn: (48)
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Note that the same wave vector k for the total field Ψ and
the CF states ψn is crucial to remove the outgoing waves from
the boundary integral in Eq. (47), and we end up with

an �
1

πR

R
LSS �Ψ−

m0
∂rΨn −Ψn∂rΨ−

m0
�Rdθ

k2 − k2n
(49)

for the incoming wave in the m0th channel. Unlike the R
matrix in other bases [15], here the S matrix does not appear
in the expansion coefficient an. By realizing that the expansion
in Eq. (43) holds not just on the LSS but also in the exterior
region, we find

∂rΨnjr�R �
X
m

z�n�m V �

m eimθ; (50)

and the total wave function in the interior of the system is
given by

Ψ�x� � 2

R
�V �


m0
− V −

m0
�
X
n

z�n�m0Ψn�x�
k2 − k2n

: (51)

Once we substitute the Ψ�x� on the LSS by Eq. (20) and
project both sides of the equation above onto the outgoing
channels, we immediately recover the S matrix given by
Eq. (45).

B. Results
To test our approach based on a nonlocal BVP in 2D, we first
calculate the poles of the S matrix for a circular microdisk cavity
with a uniform index. As mentioned in the introduction, the
poles of the S matrix correspond to complex-valued resonances
of the optical microcavity. This connection is due to the diverg-
ing eigenvalues of the S matrix at its poles, meaning that an
infinitesimal incoming amplitude leads to finite outgoing
waves. For a circular microdisk cavity with a uniform index,
the angular momentum number m is a conserved quantity,
and the LSS is chosen as the disk boundary. The TM resonan-
ces can be found by solving the following analytical expression:

H�0
m �kR�J�0

m �nkR�
H�

m �kR�J 0m�nkR�
� n: (52)

In Fig. 3 we compare the poles of the S matrix calculated by
the BVP approach and this analytical expression, and good
agreement is found for different poles with m ∈ �0; 12�.

Next, we inspect the S matrix constructed by the BVP ap-
proach from a different perspective, i.e., the symmetry property
of its eigenvalues in the presence of PT andRT symmetries. It
was found that, in a PT -symmetric system, sm’s undergo spon-
taneous symmetry breaking as a function of frequency or sys-
tem size [37]: PT symmetry warrants s
m � s−1m 0 . When m;m 0

in this expression are the same, the corresponding eigenstate of
the S matrix is in the PT -symmetric phase with jsmj � 1,
i.e., the optical flux in the corresponding scattering eigenstate
is conserved, even though the system is non-Hermitian in
the presence of gain and loss. In the PT -broken phase
m ≠ m 0, and we find jsmj � jsm 0 j−1 instead (or equivalently,
log10 jsmj2 � − log10 jsm 0 j2), which represent a pair of amplified
and attenuated scattering eigenstates.

In Fig. 4 we show the eigenvalues of a microdisk cavity
with refractive index n�x� � 1.5� 0.4 sin θ, which satisfies
not only PT symmetry (here P changes θ to −θ) but
also RT symmetry [40,48], i.e., n�r; θ� � n
�r; θ� π�. The
eigenvalues of the S matrix for an RT -symmetric structure
display similar spontaneous breaking as those in their PT -
symmetric counterparts, and these properties are nicely man-
ifested by the S matrix given by Eq. (28) using the BVP
approach [Fig. 4(a)].

It can be easily seen that, when a system has both PT
and RT symmetries, their symmetric (broken) phases for the
S matrix coincide due to the unimodular property of sm.
Therefore, the scattering eigenstates in the symmetric phase
should also simultaneously possess the properties of both PT
and RT symmetries. To understand and differentiate these
properties, we turn to the eigenvectors of the S matrix, which
are the projection coefficients of the scattering eigenstates onto
the incoming and outgoing channels. The cylindrical channels

0 2 4 6 8 10
-0.6

-0.4

-0.2

0

Re[kR]
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R
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n = 1.5

Fig. 3. Resonances of a microdisk cavity with a uniform index
n � 1.5. The crosses are the analytical results given by Eq. (52),
and the circles are the poles of the S matrix constructed using Eq. (28).
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Fig. 4. (a) Spontaneous symmetry breaking of S-matrix eigenvalues
sn in a microdisk cavity with PT and RT symmetries. Its refractive
index is given by n�x� � 1.5� 0.4 sin θ, the imaginary part of which
is shown schematically by the inset in (b). (b) A real-valued eigenvector
of S at kR � 4 in the PT - andRT -symmetric phase. The blue (pink)
bars show symmetric and antisymmetric components with opposite
m’s. The corresponding wave function is shown in (d), where the cav-
ity boundary is marked by the white circle. The wave function of a
scattering eigenstate in the broken-symmetry phase at kR � 4 is
shown in (c) as a comparison.
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specified by Eq. (19) are PT -symmetric, i.e., PT Ψ−
m � Ψ�

m ,
where the minus sign introduced by the parity operator (again
θ → −θ) in the exponent is canceled by performing a time
reversal (i.e., i becomes −i in the exponent; it also changes
H	

m to H�
m ). Now if Ψ−�r; θ� � P

mvmΨ−
m�r; θ� is the inci-

dent wave in an eigenstate of S with eigenvalue sn, then by
performing a combined PT operation on its scattered wave
[i.e., Ψ��r; θ� � sn

P
mvmΨ�

m �r; θ�] the new incoming state
Ψ̄−�r; θ� ≡ PT Ψ��r; θ� � s
n

P
mv



mΨ−

m�r; θ� should also be
an eigenstate of the S matrix due to PT symmetry. It then
follows that vm � gv
m should hold for all m’s in the PT -
symmetric phase, and the proportional constant g can be set
as 1 by choosing a proper global phase of vm. In other words,
all vm’s can be made real in the PT -symmetric phase. If we
apply a similar analysis ofRT symmetry, we find that the chan-
nel functions transform according to RT Ψ−

m � �−�mΨ�
−m,

which leads to v
−m � 	�−�mvm. Therefore, we find

v−m � 	�−�mvm �vm ∈ R�; (53)

as a result of these two symmetries, which is nicely captured by
the result of the BVP approach [Fig. 4(b)].

We also note that a 2D structure with both PT and RT
symmetries also has mirror symmetry about the θ � 	π∕2 axis
(i.e., the axis perpendicular to the parity axis in PT symmetry)
[40], which imposes the following property:

v−m � 	�−�mvm �vm ∈ C�: (54)

The overall 	 sign corresponds to scattering eigenstates
that are even and odd functions about the θ � 	π∕2 axis, re-
spectively. Again, the mirror symmetry about the θ � 	π∕2
axis is nicely observed in the BVP approach, both in the
symmetry-broken phase [Fig. 4(c)] and symmetric phase
[Fig. 4(d)]. In the former PT Ψ ≠ Ψ, RT Ψ ≠ Ψ and hence
jΨ�r; θ�j ≠ jΨ�r; −θ�j; jΨ�r; θ�j ≠ jΨ�r; θ� π�j; in the latter,
we find jΨj is symmetric about both the horizontal and vertical
axes instead.

The corresponding resonant modes with resonant frequen-
cies kmR � 3.5042 − 0.2492i; 4.5989 − 0.6445i are shown
in Fig. 5, which are calculated as the poles of the S matrix con-
structed using the BVP method. These poles differ by less than
0.01% from the results of an iterative method we outline below,
in both their real and imaginary parts. As briefly mentioned in
Section 2, the difference between a CF state and a resonance
lies in the wave vector in the exterior of an optical microcavity:
A CF state features a real-valued k, while a resonance has the
same complex-valued resonant frequency km as in the interior
of the microcavity. Therefore, if we replace k by a CF frequency

km in the eigenvalue problem in Eq. (35), which determines the
CF states, and repeat this procedure until km converges, we end
up with the same complex-valued frequency km in both the
interior and exterior of the microcavity, which is a resonance.

It is important to note that, while the resonant modes of the
system have mirror symmetry about the θ � 	π∕2 axis, here,
they do not possess a PT - andRT -symmetric phase: perform-
ing a combined PT orRT operation does not leave a resonant
mode unchanged. Its outgoing waves outside the microcavity
are now turned into incoming waves, which, by definition, give
a zero of the S matrix, whose complex-valued frequency is the
complex conjugate of the original resonance [37]. Nevertheless,
because the resonant modes are the scattering eigenstates at the
poles of the S matrix, they bear resemblance to the latter when
S is evaluated at a real-valued frequency, as can be seen by com-
paring Figs. 4(c) and 4(d) and Figs. 5(a) and 5(b).

4. CONCLUSION AND DISCUSSION

In summary, we have presented a finite-difference scheme to
construct the S matrix for optical microcavities as a BVP.
The boundary condition for the total field is simple in 1D
but becomes nonlocal in 2D, which appears as an inhomo-
geneous term and also in the non-Hermitian Hamiltonian that
determines the CF states. Although the uniqueness and exist-
ence of the solutions for a nonlocal BVP are not guaranteed
in general, here we can rest assured as the underlying physical
process (i.e., scattering) is deterministic. We have verified that
our approach is consistent with theR-matrix method in the ba-
sis of CF states, and it addresses the artifact in the normal deriva-
tive of the total field typically found in theR-matrix approach.

For applications such as enhancing light–matter interactions
and sensing, often it requires accurate knowledge of wave
function inside and on the boundary of optical microcavities.
In such cases, the BVP method proposed here provides an eco-
nomic alternative to the modal expansion approach, as the lat-
ter requires a large number of basis functions to provide the
same level of accuracy. For example, at least 500 basis functions
and five times more computational time are needed to capture
the symmetry properties of the scattering eigenvalues shown in
Fig. 4(a), whether CF states or the orthogonal states with a van-
ishing radial derivative at the LSS are used [37,57].

We also note that there are several other efficient numerical
approaches to construct the S matrix, such as finite-different-
time-domain methods [21,22] already mentioned in the intro-
duction and the method of auxiliary sources [58,59]. The
advantages of our approach are that it provides a conceptually
clear construction and a numerically straightforward imple-
mentation, and it can be applied to 3D structures using
techniques similar to those developed for binary gratings [60].
Our approach can also be applied to a network of optical micro-
cavities [61], and it can treat continuous variations of the
refractive index both inside and between these cavities, all
enclosed by the LSS.

Finally, we note that, while the poles of the S matrix are
independent of the choice of the incoming and outgoing chan-
nels, the eigenvalues of S do depend on such choices in general.
Only when the incoming and outgoing channels are trans-
formed in the same way do the eigenvalues of S stay unchanged
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Fig. 5. Resonant modes corresponding to the scattering eigenstates
in Figs. 4(c) and 4(d).
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because then S merely experiences a similar transformation. In
our discussion of 2D TM waves, the specific forms of the chan-
nels have been chosen to simplify the notations in the deriva-
tion of the nonlocal boundary condition and the S matrix.
When different channels are used, for example, by changing
the angular dependence of Ψ−

m to e−imθ [37], we effectively per-
form a permutation on the incoming channels, which is not a
similar transformation with unchanged outgoing channels.
Therefore, the S-matrix eigenvalues and their symmetric (sym-
metry-broken) phases change as a result in general. Exploring
this freedom of choosing the channel functions may lead to a
close resemblance between the spontaneous symmetry breaking
of the S matrix and the corresponding close-cavity modes in
PT - and RT -symmetric systems, similar to the finding in
1D heterostructures [38].

Funding. Directorate for Mathematical and Physical
Sciences (MPS) (DMR-1506987); National Science
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