• Photonics Research
  • Vol. 8, Issue 11, 1792 (2020)
Yanan Han1, Shuiying Xiang1、2、*, Yang Wang1, Yuanting Ma1, Bo Wang1, Aijun Wen1, and Yue Hao2
Author Affiliations
  • 1State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
  • 2State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
  • show less
    DOI: 10.1364/PRJ.403319 Cite this Article Set citation alerts
    Yanan Han, Shuiying Xiang, Yang Wang, Yuanting Ma, Bo Wang, Aijun Wen, Yue Hao. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network[J]. Photonics Research, 2020, 8(11): 1792 Copy Citation Text show less
    References

    [1] J. Ohtsubo. Semiconductor Lasers: Stability, Instability and Chaos(2012).

    [2] P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shorel, Y. C. Wang, A. B. Wang. Ultrafast fully photonic random bit generator. J. Lightwave Technol., 36, 2531-2540(2018).

    [3] S. Y. Xiang, B. Wang, Y. Wang, Y. N. Han, A. J. Wen, Y. Hao. 2.24-Tb/s physical random bit generation with minimal post-processing based on chaotic semiconductor lasers network. J. Lightwave Technol., 37, 3987-3993(2019).

    [4] G. D. Van Wiggeren, R. Roy. Communication with chaotic lasers. Science, 279, 1198-1200(1998).

    [5] C. Posadas-Castillo, R. M. López-Gutiérrez, C. Cruz-Hernández. Synchronization of chaotic solid-state Nd:YAG lasers: application to secure communication. Commun. Nonlinear Sci. Numer. Simul., 13, 1655-1667(2008).

    [6] N. Jiang, W. Pan, L. S. Yan, B. Luo, S. Y. Xiang, L. Yang, D. Zheng, N. Q. Li. Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser. IEEE J. Sel. Top. Quantum Electron., 17, 1220-1227(2011).

    [7] C. Xue, N. Jiang, K. Qiu, Y. Lv. Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing. Opt. Express, 23, 14510-14519(2015).

    [8] J. Vatin, D. Rontani, M. Sciamanna. Experimental reservoir computing using VCSEL polarization dynamics. Opt. Express, 27, 18579-18584(2019).

    [9] X. X. Guo, S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, Y. Hao. Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback. IEEE J. Sel. Top. Quantum Electron., 26, 1700109(2020).

    [10] M. Naruse, W. Nomura, M. Aono, M. Ohtsu, Y. Sonnefraud, A. Drezet, S. Huant, S. J. Kim. Decision making based on optical excitation transfer via near-field interactions between quantum dots. J. Appl. Phys., 116, 154303(2014).

    [11] T. Mihana, Y. Mitsui, M. Takabayashi, K. Kazutaka, S. Sunada, M. Naruse, A. Uchida. Decision making for the multi-armed bandit problem using lag synchronization of chaos in mutually-coupled semiconductor lasers. Opt. Express, 27, 26989-27008(2019).

    [12] M. Naruse, N. Chauvet, A. Uchida, A. Drezet, G. Bachelier, S. Huant, H. Hori. Decision making photonics: solving bandit problems using photons. IEEE J. Sel. Top. Quantum Electron., 26, 7700210(2020).

    [13] S. Y. Xiang, Y. Zhang, J. Gong, X. Guo, L. Lin, Y. Hao. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J. Sel. Top. Quantum Electron., 25, 1700109(2019).

    [14] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [15] S. Y. Xiang, Z. X. Ren, Y. H. Zhang, Z. W. Song, Y. Hao. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on VCSEL-SA. Opt. Lett., 45, 1104-1107(2020).

    [16] S. Y. Xiang, Z. X. Ren, Y. H. Zhang, X. X. Guo, G. Q. Han, Y. Hao. Computing primitive of fully-VCSELs-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans. Neural Netw. Learning Syst., 1-12(2020).

    [17] J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, G. Y. Feng. Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers. IEEE Photon. Technol. Lett., 23, 759-761(2011).

    [18] A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, Y. C. Wang. Generation of wide band chaos with suppressed time-delay signature by delayed self-interference. Opt. Express, 21, 8701-8710(2013).

    [19] N. Q. Li, W. Pan, S. Y. Xiang, L. S. Yan, B. Luo, X. H. Zou, L. Y. Zhang, P. H. Mu. Photonic generation of wide band time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser. IEEE J. Sel. Top. Quantum Electron., 48, 1339-1345(2012).

    [20] T. Deng, Z. M. Wu, G. Q. Xia. Two-mode coexistence in 1550-nm VCSELs with optical feedback. IEEE Photon. Technol. Lett., 27, 2075-2078(2015).

    [21] J. G. Wu, S. W. Huang, Y. J. Huang, H. Zhou, J. H. Yang, J. M. Liu, M. B. Yu, G. Q. Lo, D. L. Kwong, S. K. Duan, C. W. Wong. Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators. Nat. Commun., 8, 15570(2017).

    [22] N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, K. Qiu. Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback. Opt. Express, 26, 32404-32416(2018).

    [23] M. J. Bünner, A. Kittel, J. Parisi, I. Fischer, W. Elsäßer. Estimation of delay times from a delayed optical feedback laser experiment. Europhys. Lett., 42, 353-358(1998).

    [24] S. S. Li, S. C. Chan. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback. IEEE J. Sel. Top. Quantum Electron., 21, 541-552(2015).

    [25] M. J. Bünner, M. Popp, T. Meyer, A. Kittel, J. Parisi. A tool to recover scalar time-delay systems from experimental time series. Phys. Rev. E, 54, 3082-3085(1996).

    [26] R. Hegger, M. J. Bünner, H. Kantz. Identifying and modeling delay feedback systems. Phys. Rev. Lett., 81, 558-561(1998).

    [27] B. P. Bezruchko, A. S. Karavaev, V. I. Ponomarenko, M. D. Prokhorov. Reconstruction of time-delay systems from chaotic time series. Phys. Rev. E, 64, 056216(2001).

    [28] M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, C. R. Mirasso. Timescales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE J. Quantum Electron., 47, 252-261(2011).

    [29] X. Porte, O. D’Huys, T. Jüngling, X. Porte, D. Brunner, M. C. Soriano, I. Fischer. Autocorrelation properties of chaotic delay dynamical systems: a study on semiconductor lasers. Phys. Rev. E, 90, 052911(2014).

    [30] M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, A. Valle. Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications. IEE P-Optoelectron., 152, 97-102(2005).

    [31] J. G. Wu, G. Q. Xia, Z. M. Wu. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Opt. Express, 17, 20124-20133(2009).

    [32] S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, J. F. Li. Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays. J. Lightwave Technol., 34, 4221-4227(2016).

    [33] N. Jiang, Y. J. Wang, A. Zhao, S. Q. Liu, Y. Q. Zhang, L. Chen, B. C. Li, K. Qiu. Simultaneous bandwidth-enhanced and time delay signature-suppressed chaos generation in semiconductor laser subject to feedback from parallel coupling ring resonators. Opt. Express, 28, 1999-2009(2020).

    [34] L. Lai, H. ElGamal, H. Jiang, H. V. Poor. Cognitive medium access: exploration, exploitation, and competition. IEEE Trans. Mobile Comput., 10, 239-253(2011).

    [35] K. Kuroda, H. Kato, S.-J. Kim, M. Naruse, M. Hasegawa. Improving throughput using multi-armed bandit algorithm for wireless LANs. Nonlinear Theory Its Applications IEICE, 9, 74-81(2018).

    [36] K. Morihiro, N. Matsui, H. Nishimura. Chaotic exploration effects on reinforcement learning in shortcut maze task. Int. J. Bifurcation Chaos Appl. Sci. Eng., 16, 3015-3022(2006).

    [37] S. J. Kim, M. Aono, E. Nameda. Efficient decision-making by volume-conserving physical object. New J. Phys., 17, 083023(2015).

    [38] S. J. Kim, M. Naruse, M. Aono, M. Ohtsu, M. Hara. Decision maker based on nanoscale photo-excitation transfer. Sci. Rep., 3, 2370(2013).

    [39] M. Naruse, M. Berthel, A. Drezet, S. Huant, H. Hori, S. J. Kim. Single photon in hierarchical architecture for physical decision making: photon intelligence. ACS Photon., 3, 2505-2514(2016).

    [40] T. Mihana, Y. Terashima, M. Naruse, S. J. Kim, A. Uchida. Memory effect on adaptive decision making with a chaotic semiconductor laser. Complexity, 2018, 4318127(2018).

    [41] M. Naruse, T. Mihana, H. Hori, H. Saigo, K. Okamura, M. Hasegawa, A. Uchida. Scalable photonic reinforcement learning by time-division multiplexing of laser chaos. Sci. Rep., 8, 10890(2018).

    [42] Y. T. Ma, S. Y. Xiang, X. X. Guo, Z. W. Song, A. J. Wen, Y. Hao. Time-delay signature concealment of chaos and ultrafast decision making in mutually coupled semiconductor lasers with a phase-modulated Sagnac loop. Opt. Express, 28, 1665-1678(2020).

    [43] L. Zunino, O. A. Rosso, M. C. Soriano. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron., 17, 1250-1257(2011).

    [44] C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett., 88, 174102(2002).

    [45] S. J. Kim, M. Aono, M. Hara. Tug-of-war model for the two-bandit problem: nonlocally-correlated parallel exploration via resource conservation. Biosystems, 101, 29-36(2010).

    [46] M. Naruse, Y. Terashima, A. Uchida, S. J. Kim. Ultrafast photonic reinforcement learning based on laser chaos. Sci. Rep., 7, 8772(2017).

    CLP Journals

    [1] Qiuquan Yan, Qinghui Deng, Jun Zhang, Ying Zhu, Ke Yin, Teng Li, Dan Wu, Tian Jiang. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493

    [2] Shuiying Xiang, Yanan Han, Ziwei Song, Xingxing Guo, Yahui Zhang, Zhenxing Ren, Suhong Wang, Yuanting Ma, Weiwen Zou, Bowen Ma, Shaofu Xu, Jianji Dong, Hailong Zhou, Quansheng Ren, Tao Deng, Yan Liu, Genquan Han, Yue Hao. A review: Photonics devices, architectures, and algorithms for optical neural computing[J]. Journal of Semiconductors, 2021, 42(2): 023105

    Yanan Han, Shuiying Xiang, Yang Wang, Yuanting Ma, Bo Wang, Aijun Wen, Yue Hao. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network[J]. Photonics Research, 2020, 8(11): 1792
    Download Citation