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We propose and demonstrate experimentally and numerically a network of three globally coupled semiconductor
lasers (SLs) that generate triple-channel chaotic signals with time delayed signature (TDS) concealment. The
effects of the coupling strength and bias current on the concealment of the TDS are investigated. The generated
chaotic signals are further applied to reinforcement learning, and a parallel scheme is proposed to solve the multi-
armed bandit (MAB) problem. The influences of mutual correlation between signals from different channels, the
sampling interval of signals, and the TDS concealment on the performance of decision making are analyzed.
Comparisons between the proposed scheme and two existing schemes show that, with a simplified algorithm,
the proposed scheme can perform as well as the previous schemes or even better. Moreover, we also consider
the robustness of decision making performance against a dynamically changing environment and verify the scal-
ability for MAB problems with different sizes. This proposed globally coupled SL network for a multi-channel
chaotic source is simple in structure and easy to implement. The attempt to solve the MAB problem in parallel can
provide potential values in the realm of the application of ultrafast photonics intelligence. © 2020 Chinese Laser

Press
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1. INTRODUCTION

Since its advent, the laser has been applied in many fields due
to the advantages of rapid response and rich dynamics [1].
For example, it is used in high-speed random bit generators
[2,3], optical secure communication, and secret key distribu-
tion that requires synchronized chaotic signals [4–7]. Recently,
photonic technologies have also been developed as efficient
ways of solving some conventional problems in the area of ar-
tificial intelligence (AI) calculation such as reservoir computing
[8,9], reinforcement learning [10–12], and brain-inspired pho-
tonic neuromorphic computing [13–16].

The security of information transmission has always been a
focus of attention. In optical communication systems, chaotic
signals can be generated by means of delayed optical feedback,
optical injection, and other external disturbances [17–22].
However, a time delay signature (TDS) can be introduced
(typically by external cavity feedback) and cause internal

periodicity of chaotic oscillations [23,24]. This feature can
be analyzed by methods like permutation entropy (PE), delayed
mutual information, autocorrelation functions (ACF), etc., and
utilized for reconstruction of chaotic systems [25–29],
which seriously threaten the security of communication.
Many methods have been reported to complicate and suppress
the TDS. For example, Lee et al. first proposed to complicate
the TDS in a semiconductor laser (SL) subject to double optical
feedback [30], and the result was experimentally demonstrated
later by Wu et al. [31]. We also numerically achieved the sup-
pression of TDS in a mutually coupled ring network with
heterogeneous time delays [32]. Very recently, Jiang et al. pro-
posed a new scheme for the generation of wideband laser chaos
with excellent TDS suppression by using parallel-coupling ring
resonators as reflector [33].

As one of the fundamental problems in reinforcement learn-
ing, adequate decision making in a dynamically changing envi-
ronment is also required in frequency and channel assignments
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in communication networks [12,34,35]. The multiarmed
bandit (MAB) problem is one of the most important issues
in decision making. One remarkable method to solve the MAB
problem was proposed by Kim et al., called the tug-of-war
(TOW) method, which was inspired by the unicellular amoeba
of true slime mold [36,37]. In recent years, several works on
ultrafast decision making have been reported based on the
TOW method [38–41]. In our previous work, we have already
proposed to solve a four-armed bandit problem in parallel by
sampling dual-channel TDS-concealed chaotic signals simulta-
neously and found it works more efficiently [42]. However, the
threshold value (TV) for each channel is set and adjusted
dependently; therefore, the scheme is not completely parallel.

In this paper, we propose a scheme for the generation of laser
chaos with TDS concealment and demonstrate its application
in reinforcement learning. Our contribution includes three as-
pects. First, the new proposed scheme for the generation of
complex laser chaos is simple in structure and easy to imple-
ment. Second, we propose a scheme to solve the MAB problem
in parallel via using the generated laser chaos and verify its scal-
ability and adaptability. Third, in order to solve the MAB prob-
lem in parallel, we propose a modified strategy and demonstrate
its effectiveness.

2. SYSTEM MODEL AND RESULTS

A. Experimental Setup
The experimental setup of three globally coupled SLs is pre-
sented in Fig. 1. Here, three distributed feedback (DFB) lasers
are driven by laser diode controllers (LDCs) to control the cur-
rent and temperature of the SLs. The wavelengths of free-
running DFB lasers are precisely matched by adjusting the cur-
rent and temperature. In this setup, the optical output from each
DFB laser is divided into two parts through a 10:90 fiber coupler
(FC). The smaller part is sent to the measure module, where the
optical signal can be detected by a high-speed photodiode (PD,
HP11982A, 15 GHz) and analyzed by a real-time
oscilloscope (OSC) with 8-bit analog-to-digital converter
(Keysight DSOV334A, 33 GHz, 80 GS/s), or directly sent to
an optical spectrum analyzer (OSA, AndoAQ6317). The rest
of the parts are combined into one with an FC through fiber
jumpers with different lengths, then pass through a variable op-
tical attenuator (VOA), and feed back to all the three DFB lasers
via an optical circulator (OC). Thus, the coupling strength and
feedback strength can be adjusted simultaneously by the VOA.

For simplicity, they are referred to as coupling strength in the
following.

B. Experimental Results
The ACF is one of the effective methods for identifying the
TDS of the measured chaotic signals [29,32], as defined in
Eq. (1),

Cm�Δt�

� h�Im�t � Δt� − hIm�t � Δt�i��Im�t� − hIm�t�i�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Im�t � Δt� − hIm�t � Δt�i�2ih�Im�t� − hIm�t�i�2i

p , (1)

where Cm�Δt� is the ACF value of the chaotic time series Im�t�
at time lag Δt, measured from DFBm (m = 1, 2, 3). h i means
time average. The TDS concealment can be reflected by the
most pronounced residual peak, denoted as ρm �m � 1, 2, 3�,
in the ACF. Better TDS concealment is indicated by a lower
value of ρm [32].

To identify the TDS of DFB1, we turn off DFB2 and
DFB3, and calculate the ACF of the output intensity; the
round-trip feedback time delay of DFB1 is indicated by the
location of ρm in the ACF. By this method, the feedback time
delays for DFB1, DFB2, and DFB3 are determined to be 97.4,
97.53, and 97.38 ns, respectively. Note that the time delay val-
ues are close, introduced by slightly different propagation
paths, and need not be precisely adjusted by the variable optical
delay line (VODL). The wavelengths of free-running DFB
lasers are precisely set as 1552.250, 1552.265, and
1552.255 nm, respectively, by carefully adjusting the current
and temperature.

Figure 2 shows the measured chaotic time series from the
three DFB lasers, the calculated ACF as a function of Δt, as well
as the power spectrum. The chaotic dynamics of the three SLs
can be revealed by the time series shown in Figs. 2(a1)–2(a3) and
the power spectrum in Figs. 2(c1)–2(c3). As can be seen in
Figs. 2(b1)–2(b3), no pronounced peaks can be found in the
ACFs except for that at time lag 0, which means the TDS is
greatly concealed in all three channels.

Then, in order to illustrate the effect of coupling strength on
TDS concealment, the ρm as a function of attenuation is pre-
sented in Fig. 3(a). Region I (III) indicates that all three DFB
lasers are in a quasi-periodic state (chaotic state). Region II rep-
resents the transition region where the states of the three DFB

Fig. 1. Experimental setup of three globally coupled SLs. DFB1,
DFB2, DFB3, three distributed feedback lasers; LDC; laser diode con-
troller; FC, fiber coupler; OC, optical circulator; VOA, variable optical
attenuator; τ11, τ22, τ33, feedback delay time; PD, photodiode; OSC,
oscilloscope; OSA, optical spectrum analyzer.

Fig. 2. (a1)–(a3) The chaotic time series from the three DFB lasers;
(b1)–(b3) the ACFs; (c1)–(c3) the power spectra. The attenuation is
9 dB, I1, I2, I3 � 28.34, 24.5, 26.6 mA, T 1,T 2,T 3 � 27.75,
15.5, 18°C.
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lasers can be quasi-periodic, weakly chaotic, and chaotic, but
not identical. Examples of the time series and the power spec-
trum of signals in each state are shown in Fig. 4. It can be seen
that ρm is less than 0.1 when the attenuation is larger than
5.0 dB and increases with the decrease of attenuation, indicat-
ing that better TDS concealment can be achieved when the
attenuation is large, namely, when the coupling strength is rel-
atively small. The influence of bias currents on the TDS con-
cealment is further investigated, as shown in Fig. 3(b). Here,
the bias currents of the three DFBs are adjusted at the same
time, and we simply present ρm as a function of I 2 (which varies
from 18.6 to 34.6 mA). It can be seen that ρm is less than 0.1
when I < 30.6 mA, indicating that low TDS can be obtained
in that region. However, when I > 30.6 mA, the ρm values are
larger than 0.1 and get larger with the increase of I 2, indicating
reduced concealment of TDS for all three DFB lasers.

C. Numerical Results
In addition, we also numerically verified the concealment of
TDS in the proposed scheme. To model the dynamics of
the three DFB lasers, the well-known Lang–Kobayashi equa-
tions are adopted, which describe the slowly varying complex
electric-field Em�t� and the carrier density Nm�t� in the active
region [31,32]. The rate equations of our scheme can be
written as

dEm�t�
dt

� 1� iα
2

�
Gm�t� −

1

τp

�
Em�t�

� krn
X3
n�1

En�t − τnm�e−i�ωnτi−Δωnmt� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DNm

p
ξm�t�,

dNm�t�
dt

� Im
q
−
Nm�t�
τe

−Gm�t�jEm�t�j2,

Gm�t� �
g �Nm�t� −N 0�
1� sjEm�t�j2

, (2)

where m �n� � 1, 2, 3 denotes the three SLs. α � 5 is the line-
width enhancement factor [32,43], g � 1.5 × 10−8 ps−1 is the
differential gain coefficient, s � 5 × 10−7 is the nonlinear gain
saturation coefficient, and τp � 2 ps and τe � 2 ns stand for
the photon lifetime and the carrier lifetime, respectively.
N 0 � 1.5 × 108 is the transparency carrier number. The var-
iable Im represents the bias current and krn describes the cou-
pling strength. The coupling time delay τnm�n ≠ m� from SLn
to SLm can be calculated from the feedback time delay
τnm�n � m� by τnm � τmn � �τnn � τmm�∕2.

In Fig. 5, we present the time series, the ACF, and the power
spectrum of the numerical results as in Fig. 2. The results show
that the TDS can be concealed in such a scheme if the param-
eters are properly selected. Note that the mismatch of param-
eters is important to improve the concealment of the TDS.
When the currents are the same for the three SLs, the region
in which the TDS is concealed is quite narrow. To find a proper
bias current, we can fix the currents of two SLs and change the
other. In this way, we find that a current mismatch of 0.5–
3.5 mA allows better TDS concealment in all three SLs. We
choose a mismatch of 2.5 mA.

For a further exploration of the parameters’ scope in which
the TDS can be better suppressed, we show in Figs. 6(a1)–
6(a3) the two-dimensional map of ρm for the three SLs as func-
tions of the coupling strength and bias current of SL2 (for sim-
plicity). The parameter region for ρm < 0.2 is considered to
have better TDS concealment and is marked by a white dotted
line [32]. It can be seen that the evolution patterns for three ρm
are similar, and the parameters for low TDS are mainly in the
diagonal region, meaning that concealment is affected by both
the current and the strength. The PE is also calculated as an
indicator of the dynamical state of SLs [44] and is presented

Fig. 3. (a) ρm as a function of attenuation; (b) ρm as a function
of I2.

Fig. 4. (a1)–(a3) Time series of signals at states I, II, and III, respec-
tively; (b1)–(b3) the corresponding power spectrum.

Fig. 5. (a1)–(a3) The chaotic time series from the three SLs;
(b1)–(b3) the ACFs, (c1)–(c3) the power spectra. The parameters
are: Im � 20, 22.5, 20 mA; krm � 11.7, 16.7, 11.7 ns−1; τmm �
2, 2.02, 2.04 ns; m � 1, 2, 3.
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in Figs. 6(b1)–6(b3). The dynamics of the SL is in chaotic
oscillation when the PE value is larger than 0.99, marked by
a black dotted line. As PE decreases, the dynamics goes
through chaos to weak chaos and finally enters quasi-periodic
oscillation.

Moreover, time delay is also an important factor that affects
the dynamics of a system, and different time delays may cause
different sensitivities to parameter mismatches. Hence, it is nec-
essary to consider different coupling delays in the investigation
of TDS concealment. Figures 7(a)–7(c) depict the ρm as a func-
tion of I with three different cases of time delay. We can see
that in all three cases, the TDS can be concealed with properly
selected parameters. Typically, we find that for a larger time
delay, stronger coupling strength is required to achieve better
TDS concealment. In Fig. 7(d), we further show the ρm as a
function of τ11 for all three SLs. It can be seen that for
fixed current and coupling strength, the values of ρm remain

relatively small as τ11 varies from 1 to 8 ns. The results indicate
that in this scheme, the TDS concealment can be achieved with
different time delays.

3. APPLICATION IN DECISION MAKING

In this section, we utilize the triple-channel chaotic signals gen-
erated from the above scheme to solve an eight-armed bandit
problem in parallel. By choosing one of eight slot machines,
there is a chance of getting a reward. The reward probabilities
are different and unknown to users [40]. Users need to explore
the slot machines to find the one that has the highest reward
probability, which we call the target machine. Due to the trade-
off known as the exploration-exploitation dilemma [40,41],
the exploration needs to be effective so that the target machine
can be found as quickly as possible and without the risk of
missing it.

A. Scheme of Solving MAB Problem in Parallel
For anN -armed bandit problem, whereN � 2k with k being a
natural number, k-bit binary number �D1,D2,…,Dk � can be
used to distinguish the N slot machines [41]. When N � 8
(k � 3), the eight slot machines can be encoded by
�D1,D2,D3�. Figure 8 gives the schematic diagram for solving
the eight-armed bandit problem in parallel. We propose a
modified strategy for the implementation of the parallel
scheme, in which the triple-channel chaotic signals s1, s2, s3
are simultaneously sampled and are, respectively, compared
with the threshold values TH1,TH2,TH3 of each channel.
Before sampling, the signals are standardized and normalized.
A decision is made according to the comparison result, that is, if
si�t� ≤ THi, Di � 0, else Di � 1. To be specific, suppose
that the triple-channel chaotic signals sampled at t1 are
s1�t1�, s2�t1�, s3�t1�; then they are compared with the threshold
values TH1,TH2,TH3, respectively. If s1�t1� ≤ TH1, the most
significant bit is determined as D1 � 0; if s2�t1� ≤ TH2, the
second-most significant bit is D2 � 0; if s3�t1� ≤ TH3, the
last-significant bit is D3 � 0. Therefore, the slot machine 1,
marked by D � �0,0, 0�, is chosen. If a reward is given by
choosing slot machine 1, then the threshold values are adjusted
so that the same decision is more likely to be made in the next
cycle. Otherwise, if no reward is yielded, the threshold values

Fig. 6. (a1)–(a3) The two-dimensional map of ρm as functions of
the coupling strength kr2 and bias current I 2 of DFB1, DFB2,
and DFB3, respectively; (b1)–(b3) the PE of DFB1, DFB2, and
DFB3, respectively. I 1 � I 3, I 2 � I1 � 2.5 mA; kr1 � kr3, kr2 �
kr1 � 5 ns−1; τmm � 2, 2.02, 2.04 ns.

Fig. 7. TDS concealment with different time delays. I1 � I 3.
(a) I2 � I 1 − 1 mA, krm � 12,10, 12 ns−1, τmm � 3, 3.02, 3.06 ns,
m � 1, 2, 3; (b) I2 � I 1 − 1 mA, krm � 12,11, 12 ns−1, τmm �
3, 3.1, 3.2 ns, (c) I 2 � I1 − 2 mA, krm � 13.3, 12.3, 13.3 ns−1;
τmm � 4, 4.07, 4.13 ns, (d) ρm as a function of τ11.
τ22 � τ11 � 0.3 ns, τ33 � τ11 � 0.7 ns, Im � 21,19, 21 mA, krm �
12,10, 12 ns−1, m � 1, 2, 3.

Fig. 8. Architecture for the eight-armed bandit problem processed
in parallel based on triple-channel chaos.
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are adjusted to reduce the probability of making the same
choice the next time.

B. Threshold Value Adjustment
The threshold values of the three channels are independently
updated according to THi � kbTVic, i � 1, 2, 3, where
bTVic is the threshold adjuster and takes the integer value from
�−L, L�. L is a constant integer. Here we set L � 10. k is a con-
stant factor to limit the range of THi. The threshold values are
adjusted as follows.

If the selected slot machine yields a reward at t, the TV value
is updated at t � 1 by�

TVi�t � 1� � �Δ� αTVi if Di � 0
TVi�t � 1� � −Δ� αTVi if Di � 1

: (3)

If the selected slot machine yields no reward at t , the TV
value is updated at t � 1 by�

TVi�t � 1� � −Ωi � αTVi if Di � 0
TVi�t � 1� � �Ωi � αTVi if Di � 1

, (4)

where the increment parameter Δ is fixed unity [41], α � 0.99
is a constant memory parameter, Ωi is determined based on the
history of getting rewards, and is given by [42]

Ωi � P̂Di
� 0� P̂Di

� 1, (5)

P̂Di
� k � NDi

� k, hit
NDi

� k, total
: (6)

NDi
� k, total is the total number of times selecting

Di � k �i � 1, 2, 3; k � 0,1�. NDi
� k, hit is the number of

times that one gets a reward by selecting Di � k. The initial
value of bTVic is set to 0. Note that for an N -armed bandit
problem where N � 2k, it only requires k-channel signals and
k-threshold values, which greatly simplifies the implementation
compared with the previous method that requires 2k − 1
threshold values [41,42].

C. Results and Discussion
To describe the decision-making performance, we define con-
vergence cycle (CC) as the number of the first cycle that reaches
a correct decision rate (CDR) of 0.9, where
CDR � N hit∕N total is the ratio of the times of getting a reward
and the total number of selections. In practice, the average ac-
curacy rate is often adopted to describe a short-time behavior, as
the environment is always changing [45]. Here, the CDR is
averaged over 400 repeated runs.

Due to the parallel structure of our scheme, the cross cor-
relation among the triple-channel chaotic signals should be
taken into account. The cross-correlation function is intro-
duced as [5]

Cmn�Δt�

� h�Im�t � Δt� − hIm�t � Δt�i��In�t� − hIn�t�
��iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�Im�t � Δt� − hIm�t � Δt�i�2ih�In�t� − hIn�t�i�2i
p , (7)

where Cmn�Δt� is the cross-correlation coefficient of signals
from SLm and SLn at time lag Δt. The zero lag correlation
(Δt � 0) can be accurately controlled by shifting the signals
in the time domain.

Three channels of zero-lag synchronized chaotic signals may
cause an ultrafast convergence when the target is encoded as
[0,0,0], making it nearly impossible to recognize the target ma-
chine [0,1,0]. For simplicity, to investigate the impact of cor-
relation on the performance of decision making, we only
consider the effect of C12�Δt�, and the values of C13�Δt�
and C23�Δt� are kept close to 0. In Fig. 9, we show the
CC as a function of C12�Δt� for three sets of numerically gen-
erated signals with different correlations, where Δt � 0.
Additionally, the result of the one-channel scheme is also cal-
culated for a brief comparison. Here, the distribution of reward
probability is P � �0.2,0.2,0.8,0.2,0.2,0.2,0.2,0.2�. It can be
seen that as the cross correlation decreases, the CC of the tri-
ple-channel scheme is smaller and becomes less than that of the
one-channel scheme when C12�Δt� < 0.8. This critical value
may change with different distributions of reward probability
and with different signals. The result shows, obviously, that the
performance of the triple-channel scheme could outstrip the
one-channel scheme when the correlation of the signals is quite
low (which is easy to realize for chaos signals). Therefore, in
order to reduce the impact of correlation among the triple-
channel signals, we properly shift each set of signals in the time
domain so that their cross-correlation coefficient at zero-time
lag is around 0. Here, the time lags for the three signals to avoid
the cross correlation are 0, 1, and 2 ns, respectively.

Next, we compare the decision-making performance of the
one-channel scheme and the triple-channel scheme by calculat-
ing the CC with different sampling intervals. The results are
illustrated in Fig. 10. It can be seen that for both schemes,
it converges quickly when the sampling interval is as small
as 10 ps, which requires the highest sampling rate that is cur-
rently available, but slows down with the increase of sampling
interval. Hence, we choose a sampling rate of 10 ps in the fol-
lowing. Also note that the CC value of the triple-channel
scheme is statistically lower and grows more slowly than that
of the one-channel scheme, which means that in the proposed
scheme, it can converge more quickly to the desired accuracy,
and the performance is relatively stable against the variation of
sampling interval. Note that in Fig. 10 and the following, the
CC value of the one-channel scheme is the average of the results
of three channel signals.

Fig. 9. Evolution of CDR for the triple-channel signals with differ-
ent correlations and for the one-channel scheme. The vertical bars in-
dicate the standard deviation around the mean value for three sets of
simulated signals. P � �0.2,0.2,0.8,0.2,0.2,0.2,0.2,0.2�.
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Then the experimentally generated signals with varying at-
tenuation are utilized to investigate the influence of TDS on
the decision-making performance. The CC as a function of at-
tenuation is presented in Fig. 11(a), and in Fig. 11(b) we show
the result of ρm for ease of comparison. The laser dynamics is
clarified, as in Fig. 3. It is obvious that when ρm > 0.3, espe-
cially when it reaches about 0.6, the cycle to reach a CDR of 0.9
is quite large. When ρm < 0.3, the change of CC is not directly
linked with ρm, but overall, a smaller CC appears with lower
ρm. Note that the signals are normalized during preprocessing,
so it is not the amplitude of the signals but the characteristics
that affect the result. In addition, for a deeper understanding of
the influence of TDS suppression on the decision-making per-
formance, we statistically investigate the evolution of CDR us-
ing numerical signals with different TDS concealments, where
the value of ρm is controlled by slightly changing the bias cur-
rent, the coupling strength, or the coupling delay of the three
SLs. In Fig. 11(c), we show the CDR as a function of the learn-
ing cycles using 11 sets of signals with ρm < 0.2 and ρm > 0.3,
respectively. It can be seen that there exist signals with larger ρm
that still converge more quickly than those with lower ρm, show-
ing that the decision-making performance does not entirely de-
pend on the suppression of TDS. However, on the whole, it

converges faster for signals with lower ρm in a decision-making
problem, which indicates that the concealment of TDS can be
helpful for better decision-making performance.

Next, we compare the decision-making performance of the
one-channel scheme, the previously proposed parallel scheme
[42], and the triple-channel scheme by calculating the CC,
where experimentally generated signals with different bias
currents are adopted. The results are illustrated in Fig. 12.
Triple-channel1 and Triple-channel2 represent the new
scheme and the previously proposed scheme, respectively.
Three channels of signals are used to solve the eight-armed ban-
dit problem. However, in the Triple-channel2 scheme, the
adopted algorithm for threshold adjustment is the same as in
the one-channel scheme. It can be seen that for both the triple-
channel schemes, the CC is quite stable against the variation of
bias current, and the performance is quite similar, whereas for
the one-channel scheme, it takes more cycles to reach the de-
sired CDR, and the CC value fluctuates more obviously with
the change of bias current, indicating that the one-channel
scheme may be more sensitive to the dynamics of signals.

In addition, it is necessary to make decisions accurately in a
dynamically changing environment, where the slot machine
with the highest reward probability may change with time.
Figure 13(a) illustrates the evolution of the CDR in a changing

Fig. 10. CC with different sampling intervals for the one-channel
and triple-channel schemes, respectively. The vertical bars indicate the
standard deviation around the mean value for eight sets of simulated
signals. P � �0.8,0.2,0.2,0.2,0.2,0.2,0.2,0.2�.

Fig. 11. (a), (b) CC and ρm as functions of attenuation; (c) CDR as
a function of learning cycles. The vertical bars indicate the standard
deviation around the mean value for 11 sets of signals with ρm < 0.2
and ρm > 0.3, respectively. The sampling interval is 10 ps.
P � �0.3,0.2,0.8,0.1,0.2,0.3,0.5,0.4�.

Fig. 12. CC as a function of bias current, for a comparison of the
triple-channel scheme (red solid line), the previously investigated par-
allel scheme (blue dotted line), and the one-channel scheme (black
solid line). The vertical bars indicate the standard deviation around
the mean value for three runs. P � �0.3,0.2,0.8,0.1,0.2,0.3,0.5,0.4�.

Fig. 13. (a) Evolution of the CDR for different distributions
of reward probability in a changing environment. P1 � �0.8,
0.2,0.2,0.2,0.2,0.2,0.2,0.2�, P2 � �0.7,0.2,0.3,0.2,0.2,0.2,0.2,0.2�.
(b) Threshold value adaption for P2.
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environment. We suppose that the target machine changes
from slot machine 1 to 3 at the 600th cycle, and slot machines
with different probability distributions are considered for com-
parison. It can be seen that after the sudden change of the target
machine, the CDR drops to zero, and then increases rapidly.
Meanwhile, one can see that it takes longer time to reach a
CDR of 0.9 for P2 than that for P1, because the former has
less difference in the distribution of reward probability [12,46].
To further reveal the underlying process of the reinforcement
learning, the adaption of the threshold values during the 1200
cycles is presented in Fig. 13(b). In the first 600 cycles where
the target slot machine is encoded as [0,0,0], the threshold val-
ues TH1, TH2, and TH3 all increase until they eventually fluc-
tuate around a maximum value of 0.5. Hence, the chaotic
signals s1�t�, s2�t�, s3�t� are more likely to be lower than the
threshold values THi �i � 1, 2, 3�, and the three significant
bits [D1,D2,D3] are more likely to be determined as [0,0,0].
When the target machine changes to [0,1,0], after temporary
fluctuation around 0, the values of TH1 and TH3 return to
about 0.5. The value of TH2 is reduced to about −0.5, which
makes it more possible for s2�t� to be larger than TH2, and
further results in an increase in the likelihood of choosing
the slot machine [0,1,0].

Scalability is also very important for a decision-making
scheme. Due to the chaotic dynamics of signals, it can be as-
sumed that arbitrarily selected k-channel chaotic signals that are
generated from the scheme as in Fig. 1 can be utilized to solve
theN -armed bandit problem successfully. To demonstrate this,
three channels of experimentally generated signals with varying
bias current are randomly selected to solve the eight-armed ban-
dit problem. The evolution of the CDR is presented in Fig. 14,
denoted by a red solid line, and the vertical bars indicate the
standard deviation around the mean value for 10 different se-
lections. It can be seen that the average CDR is about 330,
similar to the result in Fig. 12. Meanwhile, eight different se-
lections of four-channel signals are successfully used to solve a
16-armed bandit problem. The evolution of the CDR is also
shown in Fig. 14, represented by the dashed blue line. These
results show that random combination of chaotic signals is

capable of solving the MAB problem efficiently, and the scal-
ability of our scheme to larger decision problems is verified.

4. CONCLUSION

In conclusion, we propose a simple scheme of achieving triple-
channel chaotic signals with TDS concealment and demon-
strate it via experiment and numerical analysis. The parameters’
range that contributes to better TDS concealment is explored
by systematically changing the bias current and the coupling
strength. Moreover, we utilize the generated triple-channel cha-
otic signals and a modified strategy for the realization of an
eight-armed bandit problem in parallel; the influences of the
signal correlation between each channel, the TDS concealment,
and the sampling interval on the performance of decision mak-
ing are investigated. In the proposed decision-making scheme,
the simplified algorithm compared with the one-channel
scheme and the previously studied parallel scheme makes it eas-
ier for implementation. However, it can perform even better
given that the mutual-correlation is relatively low. Moreover,
it has stabler performance for different sampling rates than
the one-channel scheme. The proposed system is scalable to
varying size of MAB problems and is adaptable in changing
environments. This work may be helpful for potential applica-
tions in the ultrafast processing of AI.
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