• Photonics Research
  • Vol. 10, Issue 10, 2394 (2022)
Jianyang Shi1、2、3, Zengyi Xu1, Wenqing Niu1, Dong Li1, Xiaoming Wu4, Ziwei Li1、2、3、5, Junwen Zhang1、2、3、5, Chao Shen1、2、3、5、6、*, Guangxu Wang4, Xiaolan Wang4, Jianli Zhang4、7、*, Fengyi Jiang4, Shaohua Yu5, and Nan Chi1、2、3、8、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 2Shanghai Engineering Research Center of Low-Earth-Orbit Satellite Communication and Applications, Shanghai 200433, China
  • 3Shanghai Collaborative Innovation Center of Low-Earth-Orbit Satellite Communication Technology, Shanghai 200433, China
  • 4National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
  • 5Peng Cheng Laboratory, Shenzhen 518055, China
  • 6e-mail:
  • 7e-mail:
  • 8e-mail:
  • show less
    DOI: 10.1364/PRJ.465455 Cite this Article Set citation alerts
    Jianyang Shi, Zengyi Xu, Wenqing Niu, Dong Li, Xiaoming Wu, Ziwei Li, Junwen Zhang, Chao Shen, Guangxu Wang, Xiaolan Wang, Jianli Zhang, Fengyi Jiang, Shaohua Yu, Nan Chi. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10 Gbps visible light communication[J]. Photonics Research, 2022, 10(10): 2394 Copy Citation Text show less
    Benchmark of distance-rate product versus reverse bias voltage for micro-LED-based photodetectors.
    Fig. 1. Benchmark of distance-rate product versus reverse bias voltage for micro-LED-based photodetectors.
    (a) Schematic of the vertical structure of Si-substrate micro-LED-based photodetector; SEM images of (b) 10 μm, (c) 50 μm, and (d) 100 μm chips.
    Fig. 2. (a) Schematic of the vertical structure of Si-substrate micro-LED-based photodetector; SEM images of (b) 10 μm, (c) 50 μm, and (d) 100 μm chips.
    (a) Schematic of layout for 4×4 Si-substrate micro-LED array; optical microscope images of (b) 10 μm, (c) 50 μm, and (d) 100 μm micro-LED array.
    Fig. 3. (a) Schematic of layout for 4×4 Si-substrate micro-LED array; optical microscope images of (b) 10 μm, (c) 50 μm, and (d) 100 μm micro-LED array.
    Responsivity spectra of (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors; electroluminescence spectra of (d) 10 μm, (e) 50 μm, and (f) 100 μm micro-LEDs.
    Fig. 4. Responsivity spectra of (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors; electroluminescence spectra of (d) 10 μm, (e) 50 μm, and (f) 100 μm micro-LEDs.
    Current–voltage (I-V) characteristics under the dark condition at (a) reverse bias and (b) forward bias; (c) photocurrent versus incident light power under the illumination of 450 nm light at −20 V.
    Fig. 5. Current–voltage (I-V) characteristics under the dark condition at (a) reverse bias and (b) forward bias; (c) photocurrent versus incident light power under the illumination of 450 nm light at 20  V.
    Experimental setup of VLC system utilizing micro-LED-based photodetector.
    Fig. 6. Experimental setup of VLC system utilizing micro-LED-based photodetector.
    Measured forward transmission gains of (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors; (d) 10 and 20 dB bandwidths versus reverse bias.
    Fig. 7. Measured forward transmission gains of (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors; (d) 10 and 20 dB bandwidths versus reverse bias.
    SNR versus reverse bias for (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors.
    Fig. 8. SNR versus reverse bias for (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors.
    Data rate versus bias current and signal Vpp for (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors.
    Fig. 9. Data rate versus bias current and signal Vpp for (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors.
    (a) Data rate versus reverse bias; (b) data rate versus incident light power for 10, 50, and 100 μm micro-LED-based photodetectors.
    Fig. 10. (a) Data rate versus reverse bias; (b) data rate versus incident light power for 10, 50, and 100 μm micro-LED-based photodetectors.
    Measured electrical spectra for (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors; maximum data rate and BER versus baudrate at 0.5 m for (d) 10 μm, (e) 50 μm, and (f) 100 μm micro-LED-based photodetectors.
    Fig. 11. Measured electrical spectra for (a) 10 μm, (b) 50 μm, and (c) 100 μm micro-LED-based photodetectors; maximum data rate and BER versus baudrate at 0.5 m for (d) 10 μm, (e) 50 μm, and (f) 100 μm micro-LED-based photodetectors.
    Data rate and BER versus transmission distance for 50 μm micro-LED-based photodetector.
    Fig. 12. Data rate and BER versus transmission distance for 50 μm micro-LED-based photodetector.
    SNR and bit number versus frequency at 1.9 Gbaud for (a) 0.5 m and (b) 1 m transmission distance; power ratio versus frequency for (c) 0.5 m and (d) 1 m.
    Fig. 13. SNR and bit number versus frequency at 1.9 Gbaud for (a) 0.5 m and (b) 1 m transmission distance; power ratio versus frequency for (c) 0.5 m and (d) 1 m.
    Capacitance
    Bias10 μm50 μm100 μm
    0 V43.8 pF92.6 pF196.6 pF
    4V42.5 pF68.7 pF137.4 pF
    8V42.2 pF61.0 pF111.5 pF
    10V42.1 pF59.8 pF108.0 pF
    Table 1. Capacitance versus Voltage of Micro-LED-Based Photodetectors
    YearSubstrateArrayBiasPeak Response WavelengthFWHMModulation FormatData Rate (Gbps)DistanceReference
    2018Sapphire−3 V392 nm34 nmOFDM3.20.5 m fiber and 0.1 m free space[17]
    2019SapphireNot mentioned−5 V405 nmOOK0.351 m free space[26]
    2019GaN−10 V400 nm40 nmOOK1.551 m free space[27]
    2020GaN−8 V400 nm60 nmBPL-OFDM7.41 m free space[28]
    2021SapphireNot mentioned−5 VOOK0.062.3 m underwater[29]
    2021Sapphire2×4−5 VOOK0.31.25 m free space[30]
    2021Sapphire2×4−5 VOOK0.541.1 m free space[31]
    2022Si4×4−20 V425 nmBPL-OFDM8.2050.5 m free space[36]
    2022Si4×4−20 V400 nm72 nmBPL-DMT10.141 m free spaceThis work
    Table 2. Recent Achievements of Micro-LED-Based Photodetectors
    Jianyang Shi, Zengyi Xu, Wenqing Niu, Dong Li, Xiaoming Wu, Ziwei Li, Junwen Zhang, Chao Shen, Guangxu Wang, Xiaolan Wang, Jianli Zhang, Fengyi Jiang, Shaohua Yu, Nan Chi. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10 Gbps visible light communication[J]. Photonics Research, 2022, 10(10): 2394
    Download Citation