• Photonics Research
  • Vol. 10, Issue 10, 2394 (2022)
Jianyang Shi1、2、3, Zengyi Xu1, Wenqing Niu1, Dong Li1, Xiaoming Wu4, Ziwei Li1、2、3、5, Junwen Zhang1、2、3、5, Chao Shen1、2、3、5、6、*, Guangxu Wang4, Xiaolan Wang4, Jianli Zhang4、7、*, Fengyi Jiang4, Shaohua Yu5, and Nan Chi1、2、3、8、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 2Shanghai Engineering Research Center of Low-Earth-Orbit Satellite Communication and Applications, Shanghai 200433, China
  • 3Shanghai Collaborative Innovation Center of Low-Earth-Orbit Satellite Communication Technology, Shanghai 200433, China
  • 4National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
  • 5Peng Cheng Laboratory, Shenzhen 518055, China
  • 6e-mail:
  • 7e-mail:
  • 8e-mail:
  • show less
    DOI: 10.1364/PRJ.465455 Cite this Article Set citation alerts
    Jianyang Shi, Zengyi Xu, Wenqing Niu, Dong Li, Xiaoming Wu, Ziwei Li, Junwen Zhang, Chao Shen, Guangxu Wang, Xiaolan Wang, Jianli Zhang, Fengyi Jiang, Shaohua Yu, Nan Chi. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10 Gbps visible light communication[J]. Photonics Research, 2022, 10(10): 2394 Copy Citation Text show less
    References

    [1] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci., 64, 110301(2021).

    [2] M. Latva-aho, K. Leppänen, F. Clazzer, A. Munari. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence(2019).

    [3] N. Chi, H. Haas, M. Kavehrad, T. D. Little, X.-L. Huang. Visible light communications: demand factors, benefits and opportunities [Guest Editorial]. IEEE Wireless Commun., 22, 5-7(2015).

    [4] N. Chi, Y. Zhou, Y. Wei, F. Hu. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh. Technol. Mag., 15, 93-102(2020).

    [5] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, J. Wang. 6G technologies: key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag., 14, 18-27(2019).

    [6] R. Bian, I. Tavakkolnia, H. Haas. 15.73  Gb/s visible light communication with off-the-shelf LEDs. J. Lightwave Technol., 37, 2418-2424(2019).

    [7] E. Xie, R. Bian, X. He, M. S. Islim, C. Chen, J. J. McKendry, E. Gu, H. Haas, M. D. Dawson. Over 10  Gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array. IEEE Photon. Technol. Lett., 32, 499-502(2020).

    [8] F. Hu, S. Chen, G. Li, P. Zou, J. Zhang, J. Hu, J. Zhang, Z. He, S. Yu, F. Jiang. Si-substrate LEDs with multiple superlattice interlayers for beyond 24  Gbps visible light communication. Photon. Res., 9, 1581-1591(2021).

    [9] D. Li, C. Ma, J. Wang, F. Hu, Y. Hou, S. Wang, J. Hu, S. Yi, Y. Ma, J. Shi. High-speed GaN-based superluminescent diode for 4.57 Gbps visible light communication. Crystals, 12, 191(2022).

    [10] C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, B. S. Ooi. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. Opt. Express, 24, 20281-20286(2016).

    [11] F. Hu, J. A. Holguin-Lerma, Y. Mao, P. Zou, C. Shen, T. K. Ng, B. S. Ooi, N. Chi. Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. Opto-Electron. Adv., 3, 200009(2020).

    [12] J. Hu, F. Hu, J. Jia, G. Li, J. Shi, J. Zhang, Z. Li, N. Chi, S. Yu, C. Shen. 46.4  Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express, 30, 4365-4373(2022).

    [13] W.-C. Wang, C.-H. Cheng, H.-Y. Wang, G.-R. Lin. White-light color conversion with red/green/violet laser diodes and yellow light-emitting diode mixing for 34.8  Gbit/s visible lighting communication. Photon. Res., 8, 1398-1408(2020).

    [14] J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, S. E. Ralph. 4λ × 100 Gbps VCSEL PAM-4 transmission over 105 m of wide band multimode fiber. Optical Fiber Communication Conference, Tu2B.6(2017).

    [15] T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, G.-R. Lin. Blue laser diode enables underwater communication at 12.4  Gbps. Sci. Rep., 7, 1(2017).

    [16] X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, P. Tian. 34.5  m underwater optical wireless communication with 2.70  Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express, 25, 27937-27947(2017).

    [17] K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, B. S. Ooi. 3.2  Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt. Express, 26, 3037-3045(2018).

    [18] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. Sanchez, J. Diaz, M. Razeghi. High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Appl. Phys. Lett., 74, 762-764(1999).

    [19] Y.-K. Su, Y.-Z. Chiou, F.-S. Juang, S.-J. Chang, J.-K. Sheu. GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals. Jpn. J. Appl. Phys., 40, 2996-2999(2001).

    [20] J. Carrano, T. Li, D. Brown, P. Grudowski, C. Eiting, R. Dupuis, J. Campbell. Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN. Appl. Phys. Lett., 73, 2405-2407(1998).

    [21] B. Butun, T. Tut, E. Ulker, T. Yelboga, E. Ozbay. High-performance visible-blind GaN-based p-i-n photodetectors. Appl. Phys. Lett., 92, 033507(2008).

    [22] G. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg. High speed, low noise ultraviolet photodetectors based on GaN pin and AlGaN (p)-GaN (i)-GaN (n) structures. Appl. Phys. Lett., 71, 2154-2156(1997).

    [23] E. Miyazaki, S. Itami, T. Araki. Using a light-emitting diode as a high-speed, wavelength selective photodetector. Rev. Sci. Instrum., 69, 3751-3754(1998).

    [24] B. Alshehri, K. Dogheche, S. Belahsene, A. Ramdane, G. Patriarche, D. Decoster, E. Dogheche. Dynamic characterization of III-nitride-based high-speed photodiodes. IEEE Photon. J., 9, 6803107(2017).

    [25] C. Shen, C. Lee, E. Stegenburgs, J. H. Lerma, T. K. Ng, S. Nakamura, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, B. S. Ooi. Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system. Appl. Phys. Express, 10, 042201(2017).

    [26] X. Liu, R. Lin, H. Chen, S. Zhang, Z. Qian, G. Zhou, X. Chen, X. Zhou, L. Zheng, R. Liu. High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays. ACS Photon., 6, 3186-3195(2019).

    [27] C. H. Kang, G. Liu, C. Lee, O. Alkhazragi, J. M. Wagstaff, K.-H. Li, F. Alhawaj, T. K. Ng, J. S. Speck, S. Nakamura. Semipolar (2021¯) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Appl. Phys. Express, 13, 014001(2019).

    [28] O. Alkhazragi, C. H. Kang, M. Kong, G. Liu, C. Lee, K.-H. Li, H. Zhang, J. M. Wagstaff, F. Alhawaj, T. K. Ng. 7.4-Gbit/s visible-light communication utilizing wavelength-selective semipolar micro-photodetector. IEEE Photon. Technol. Lett., 32, 767-770(2020).

    [29] R. Lin, X. Liu, G. Zhou, Z. Qian, X. Cui, P. Tian. InGaN Micro-LED array enabled advanced underwater wireless optical communication and underwater charging. Adv. Opt. Mater., 9, 2002211(2021).

    [30] Y.-H. Chang, F.-J. Liou, W. H. Gunawan, C.-W. Chow, Y. Liu, H.-C. Kuo, C.-H. Yeh. High bandwidth semipolar (20-21) μ-LED serving as photo-receiver for visible light communication. European Conference on Optical Communication (ECOC), 1-4(2021).

    [31] Y.-H. Chang, T.-C. Hsu, F.-J. Liou, C.-W. Chow, Y. Liu, H.-C. Kuo, C.-H. Yeh, P.-H. Yang. High-bandwidth InGaN/GaN semipolar micro-LED acting as a fast photodetector for visible light communications. Opt. Express, 29, 37245-37252(2021).

    [32] A. T. Hussein, J. M. Elmirghani. 10  Gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes. J. Opt. Commun. Netw., 7, 718-735(2015).

    [33] C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, C. Mo. Different properties of GaN-based LED grown on Si (111) and transferred onto new substrate. Sci. China Ser. E, 49, 313-321(2006).

    [34] Y. Zhou, X. Zhu, F. Hu, J. Shi, F. Wang, P. Zou, J. Liu, F. Jiang, N. Chi. Common-anode LED on a Si substrate for beyond 15  Gbit/s underwater visible light communication. Photon. Res., 7, 1019-1029(2019).

    [35] K. Saron, M. Hashim, M. Farrukh. Growth of GaN films on silicon (1 1 1) by thermal vapor deposition method: optical functions and MSM UV photodetector applications. Superlattices Microstruct., 64, 88-97(2013).

    [36] W. Niu, J. Shi, Z. Xu, D. Li, W. Xiao, G. Wang, J. Zhang, Z. He, C. Shen, N. Chi. 8.205-Gbit/s visible light communication utilizing 4 × 4 Si-substrate μLED-based photodetector array. Optical Fiber Communication Conference, Tu3C.2(2022).

    [37] A. Krost, A. Dadgar. GaN-based optoelectronics on silicon substrates. Mater. Sci. Eng. B, 93, 77-84(2002).

    [38] F. Jiang, J. Liu, L. Wang, C. Xiong, W. Fang, C. Mo, Y. Tang, G. Wang, L. Xu, J. Ding. High optical efficiency GaN based blue LED on silicon substrate. Sci. Sin. Phys. Mech. Astron., 45, 067302(2015).

    [39] Z. Quan, J. Liu, F. Fang, G. Wang, F. Jiang. Effect of V-shaped pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes. Opt. Quantum Electron., 48, 195(2016).

    [40] Z. Quan, L. Wang, C. Zheng, J. Liu, F. Jiang. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes. J. Appl. Phys., 116, 183107(2014).

    [41] G. Wang, C. Xiong, J. Liu, F. Jiang. Improving p-type contact characteristics by Ni-assisted annealing and effects on surface morphologic evolution of InGaN LED films grown on Si (1 1 1). Appl. Surf. Sci., 257, 8675-8678(2011).

    [42] F. Jiang, L. Wang, W. Fang. Semiconductor light-emitting device and method for making same. U.S. patent(2011).

    [43] K. Wada, H. Yoshioka, J. Zhu, T. Matsuyama, H. Horinaka. Simple form of multimode laser diode rate equations incorporating the band filling effect. Opt. Express, 19, 3019-3036(2011).

    [44] J. Campello. Practical bit loading for DMT. IEEE International Conference on Communications, 801-805(1999).

    [45] J. Campello. Optimal discrete bit loading for multicarrier modulation systems. IEEE International Symposium on Information Theory, 193(1998).

    [46] X. Huang, J. Shi, J. Li, Y. Wang, N. Chi. A Gb/s VLC transmission using hardware preequalization circuit. IEEE Photon. Technol. Lett., 27, 1915-1918(2015).

    [47] X. Huang, S. Chen, Z. Wang, Y. Wang, N. Chi. 1.2  Gbit/s visible light transmission based on orthogonal frequency-division multiplexing using a phosphorescent white light-emitting diode and a pre-equalization circuit. Chin. Opt. Lett., 13, 100602(2015).

    [48] X. Huang, Z. Wang, J. Shi, Y. Wang, N. Chi. 1.6  Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express, 23, 22034-22042(2015).

    [49] X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, N. Chi. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED. IEEE Photon. J., 7, 7904008(2015).

    [50] R. A. Shafik, M. S. Rahman, A. R. Islam. On the extended relationships among EVM, BER and SNR as performance metrics. International Conference on Electrical and Computer Engineering (ICECE), 408-411(2006).

    [51] F. Xue, L. Yang, M. Chen, J. Chen, X. Yang, L. Wang, L. Chen, C. Pan, Z. L. Wang. Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Mater., 9, e418(2017).

    [52] P. Zou, Y. Zhao, F. Hu, N. Chi. Underwater visible light communication at 3.24  Gb/s using novel two-dimensional bit allocation. Opt. Express, 28, 11319-11338(2020).

    Jianyang Shi, Zengyi Xu, Wenqing Niu, Dong Li, Xiaoming Wu, Ziwei Li, Junwen Zhang, Chao Shen, Guangxu Wang, Xiaolan Wang, Jianli Zhang, Fengyi Jiang, Shaohua Yu, Nan Chi. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10 Gbps visible light communication[J]. Photonics Research, 2022, 10(10): 2394
    Download Citation