• Opto-Electronic Advances
  • Vol. 1, Issue 8, 180013 (2018)
[in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]*
Author Affiliations
  • State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
  • show less
    DOI: 10.29026/oea.2018.180013 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Perfect electromagnetic and sound absorption via subwavelength holes array[J]. Opto-Electronic Advances, 2018, 1(8): 180013 Copy Citation Text show less
    References

    [1] KnottE FShaefferJ FTuleyM TRadar Cross Section 2nd ed (SciTech Publishing, Raleigh, North Carolina, 2004)Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section 2nd ed (SciTech Publishing, Raleigh, North Carolina, 2004).

    [2] J M Hao, J Wang, X L Liu, W J Padilla, L Zhou et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett, 96, 251104(2010).

    [3] Q Feng, M B Pu, C G Hu, X G Luo. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett, 37, 2133-2135(2012).

    [4] J Mei, G C Ma, M Yang, Z Y Yang, W J Wen et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun, 3, 756(2012).

    [5] A Vora, J Gwamuri, N Pala, A Kulkarni, J M Pearce et al. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep, 4, 4901(2014).

    [6] M W Song, H L Yu, C G Hu, M B Pu, Z J Zhang et al. Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt Express, 21, 32207-32216(2013).

    [7] Y X Cui, Y R He, Y Jin, F Ding, L Yang et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev, 8, 495-520(2014).

    [8] X G Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron, 58, 594201(2015).

    [9] J de Rosny, M Fink. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys Rev Lett, 89, 124301(2002).

    [10] G Lerosey, J de Rosny, A Tourin, M Fink. Focusing beyond the diffraction limit with far-field time reversal. Science, 315, 1120-1122(2007).

    [11] L W Chen, Y Zhou, M X Wu, M H Hong. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv, 1, 170001(2018).

    [12] F Qin, M H Hong. Breaking the diffraction limit in far field by planar metalens. Sci China Phys Mech Astron, 60, 044231(2017).

    [13] JacobZAlekseyevL VNarimanovEOptical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express14, 8247-8256 (2006)Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express 14, 8247-8256 (2006).

    [14] J Li, L Fok, X B Yin, G Bartal, X Zhang. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater, 8, 931-934(2009).

    [15] A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [16] N F Yu, F Capasso. Flat optics with designer metasurfaces. Nat Mater, 13, 139-150(2014).

    [17] G C Ma, M Yang, S W Xiao, Z Y Yang, P Sheng. Acoustic metasurface with hybrid resonances. Nat Mater, 13, 873-878(2014).

    [18] X G Luo. Subwavelength optical engineering with metasurface waves. Adv Opt Mater, 6, 1701201(2018).

    [19] M B Pu, Q Feng, M Wang, C G Hu, C Huang et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express, 20, 2246-2254(2012).

    [20] S C Li, J Luo, S Anwar, S Li, W X Lu et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Phys Rev B, 91, 220301(2015).

    [21] M B Pu, C G Hu, C Huang, C T Wang, Z Y Zhao et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt Express, 21, 992-1001(2013).

    [22] D-Y Maa. Potential of microperforated panel absorber. J Acoust Soc Am, 104, 2861-2866(1998).

    [23] T Herdtle, J S Bolton, N N Kim, J H Alexander, R W Gerdes. Transfer impedance of microperforated materials with tapered holes. J Acoust Soc Am, 134, 4752(2013).

    [24] Y J Qian, D Y Kong, S M Liu, S M Sun, Z Zhao. Investigation on micro-perforated panel absorber with ultra-micro perforations. Appl Acoust, 74, 931-935(2013).

    [25] B Chambers. Optimum design of a salisbury screen radar absorber. Electron Lett, 30, 1353-1354(1994).

    [26] E F Knott, K Langseth. Performance degradation of Jaumann absorbers due to curvature. IEEE Trans Antennas Propag, 28, 137-139(1980).

    [27] Y T Duan, J Luo, G H Wang, Z H Hang, B Hou et al. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci Rep, 5, 12139(2015).

    [28] Y Cheng, C Zhou, B G Yuan, D J Wu, Q Wei et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater, 14, 1013-1019(2015).

    [29] F C Smith. Design principles of broadband adaptive Salisbury screen absorber. Electron Lett, 38, 1052-1054(2002).

    [30] B A Munk, P Munk, J Pryor. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans Antennas Propag, 55, 186-193(2007).

    [31] M B Pu, P Chen, Y Q Wang, Z Y Zhao, C T Wang et al. Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt Express, 21, 11618-11627(2013).

    [32] G M Akselrod, J N Huang, T B Hoang, P T Bowen, L Su et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater, 27, 8028-8034(2015).

    [33] Y D Chong, L Ge, H Cao, A D Stone. Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett, 105, 053901(2010).

    [34] M B Pu, Q Feng, C G Hu, X G Luo. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 7, 733-738(2012).

    [35] S C Li, Q Duan, S Li, Q Yin, W X Lu et al. Perfect electromagnetic absorption at one-atom-thick scale. Appl Phys Lett, 107, 181112(2015).

    [36] M Papaioannou, E Plum, J Valente, E T F Rogers, N I Zheludev. Two-dimensional control of light with light on metasurfaces. Light Sci Appl, 5, e16070(2016).

    [37] X Li, M B Pu, Y Q Wang, X L Ma, Y Li et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv Opt Mater, 4, 659-663(2016).

    [38] K N Rozanov. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag, 48, 1230-1234(2000).

    [39] D C Wang, L C Zhang, Y H Gu, M Q Mehmood, Y D Gong et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep, 5, 15020(2015).

    [40] W J Wan, Y D Chong, L Ge, H Noh, A D Stone et al. Time-reversed lasing and interferometric control of absorption. Science, 331, 889-892(2011).

    [41] P J Wei, C Croenne, S T Chu, J Li. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl Phys Lett, 104, 121902(2014).

    [42] J F Zhang, K F MacDonald, N I Zheludev. Controlling light-with-light without nonlinearity. Light Sci Appl, 1, e18(2012).

    [43] T W Ebbesen, H J Lezec, H F Ghaemi, T Thio, P A Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [44] MunkB AFrequency Selective Surfaces: Theory and Design (Wiley, New York, 2000)Munk B A. Frequency Selective Surfaces: Theory and Design (Wiley, New York, 2000).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Perfect electromagnetic and sound absorption via subwavelength holes array[J]. Opto-Electronic Advances, 2018, 1(8): 180013
    Download Citation