• Photonics Research
  • Vol. 10, Issue 1, 261 (2022)
Shaonan Zheng, Hong Cai, Linfang Xu, Nanxi Li*, Zhonghua Gu, Yao Zhang, Weiguo Chen, Yanyan Zhou, Qingxin Zhang, and Lennon Yao Ting Lee
Author Affiliations
  • Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
  • show less
    DOI: 10.1364/PRJ.439434 Cite this Article Set citation alerts
    Shaonan Zheng, Hong Cai, Linfang Xu, Nanxi Li, Zhonghua Gu, Yao Zhang, Weiguo Chen, Yanyan Zhou, Qingxin Zhang, Lennon Yao Ting Lee. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing[J]. Photonics Research, 2022, 10(1): 261 Copy Citation Text show less

    Abstract

    Gas sensors have a wide variety of applications. Among various existing gas sensing technologies, optical gas sensors have outstanding advantages. The development of the Internet of Things and consumer electronics has put stringent requirements on miniaturized gas sensing technology. Here, we demonstrate a chip-scale silicon substrate-integrated hollow waveguide (Si-iHWG) to serve as an optical channel and gas cell in an optical gas sensor. It is fabricated through silicon wafer etching and wafer bonding. The Si-iHWG chip is further assembled with an off-chip light source and detector to build a fully functional compact nondispersive infrared (NDIR) CO2 sensor. The chip size is 10 mm×9 mm, and the dimension of the sensor excluding the microcontroller board is 50 mm×25 mm×16 mm. This chip solution with compactness, versatility, robustness, and low cost provides a cost-effective platform for miniaturized optical sensing applications ranging from air quality monitoring to consumer electronics.
    T=II0=eϵcL,

    View in Article

    T=kUsUr,

    View in Article

    t=UsUr=Tk=1keϵcL,

    View in Article

    Shaonan Zheng, Hong Cai, Linfang Xu, Nanxi Li, Zhonghua Gu, Yao Zhang, Weiguo Chen, Yanyan Zhou, Qingxin Zhang, Lennon Yao Ting Lee. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing[J]. Photonics Research, 2022, 10(1): 261
    Download Citation