• Photonics Research
  • Vol. 9, Issue 12, 2341 (2021)
Konthoujam James Singh1、2, Xiaotong Fan3, Annada Sankar Sadhu1、2, Chun-Ho Lin4, Fang-Jyun Liou1, Tingzhu Wu3、7、*, Yu-Jung Lu5, Jr-Hau He6, Zhong Chen3, Tom Wu4, and Hao-Chung Kuo1、8、*
Author Affiliations
  • 1Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 2International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 3Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
  • 4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
  • 5Research Center for Applied Sciences, Academia Sinica, Taipei 11529, China
  • 6Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
  • 7e-mail: wutingzhu@xmu.edu.cn
  • 8e-mail: hckuo@faculty.nctu.edu.tw
  • show less
    DOI: 10.1364/PRJ.434270 Cite this Article Set citation alerts
    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341 Copy Citation Text show less
    References

    [1] J. Cho, J. H. Park, J. K. Kim, E. F. Schubert. White light-emitting diodes: history, progress, and future. Laser Photon. Rev., 11, 1600147(2017).

    [2] D. Zhu, M. D. Al-Amri, C. J. Humphreys, M. El-Gomati, M. S. Zubairy. Solid-state lighting based on light emitting diode technology. Optics in Our Time, 87-118(2016).

    [3] A. Žukauskas, M. S. Shur, R. Gaska. Light-emitting diodes: progress in solid-state lighting. MRS Bull., 26, 764-769(2001).

    [4] B. Arredondo, B. Romero, J. M. Sánchez Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, C. de Dioz. Visible light communication system using an organic bulk heterojunction photodetector. Sensors, 13, 12266-12276(2013).

    [5] P. A. Haigh, F. Bausi, H. Le Minh, I. Papakonstantinou, W. O. Popoola, A. Burton, F. Cacialli. Wavelength-multiplexed polymer LEDs: towards 55 Mb/s organic visible light communications. IEEE J. Sel. Areas Commun., 33, 1819-1828(2015).

    [6] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou. Visible light communications using organic light emitting diodes. IEEE Commun. Mag., 51, 148-154(2013).

    [7] M. T. Sajjad, P. P. Manousiadis, H. Chun, D. A. Vithanage, S. Rajbhandari, A. L. Kanibolotsky, G. Faulkner, D. O’Brien, P. J. Skabara, I. D. W. Samuel, G. A. Turnbull. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS Photon., 2, 194-199(2015).

    [8] L. Wang, Z. Wei, C.-J. Chen, L. Wang, H. Y. Fu, L. Zhang, K.-C. Chen, M.-C. Wu, Y. Dong, Z. Hao, Y. Luo. 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photon. Res., 9, 792-802(2021).

    [9] S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, H. Haas. Organic solar cells as high-speed data detectors for visible light communication. Optica, 2, 607-610(2015).

    [10] Y. Xu, J. Chen, H. Zhang, H. Wei, L. Zhou, Z. Wang, Y. Pan, X. Su, A. Zhang, J. Fu. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. J. Mater. Chem. C, 8, 247-252(2020).

    [11] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515, 96-99(2014).

    [12] Y.-M. Huang, K. James Singh, A.-C. Liu, C.-C. Lin, Z. Chen, K. Wang, Y. Lin, Z. Liu, T. Wu, H.-C. Kuo. Advances in quantum-dot-based displays. Nanomaterials, 10, 1327(2020).

    [13] V. Wood, V. Bulović. Colloidal quantum dot light-emitting devices. Nano Rev., 1, 5202(2010).

    [14] X. L. Fan, T. Wu, B. Liu, R. Zhang, H. C. Kuo, Z. Chen. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv., 4, 21002201(2021).

    [15] X. Xiao, H. Tang, T. Zhang, W. Chen, W. Chen, D. Wu, R. Wang, K. Wang. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication. Opt. Express, 24, 21577-21586(2016).

    [16] C.-Y. Kang, C.-H. Lin, C.-H. Lin, T.-Y. Li, S.-W. Huang Chen, C.-L. Tsai, C.-W. Sher, T.-Z. Wu, P.-T. Lee, X. Xu, M. Zhang, C.-H. Ho, J.-H. He, H.-C. Kuo. Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv. Sci., 6, 1902230(2019).

    [17] Q. V. Le, K. Hong, H. W. Jang, S. Y. Kim. Halide perovskite quantum dots for light-emitting diodes: properties, synthesis, applications, and outlooks. Adv. Electron. Mater., 4, 1800335(2018).

    [18] I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon., 3, 1150-1156(2016).

    [19] C. Jiang, J. Yao, P. Huang, R. Tang, X. Wang, X. Lei, H. Zeng, S. Chang, H. Zhong, H. Yao, C. Zhu, T. Chen. Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells. Cell Rep. Phys. Sci., 1, 100001(2020).

    [20] P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee, J.-S. Lee. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun., 52, 2067-2070(2016).

    [21] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Adv. Mater., 28, 6804-6834(2016).

    [22] X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu, K. L. Karen, Y. Zheng, S. Liu, S. Chen, K. Wang, X. W. Sun. Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic–inorganic mixed cations. Adv. Mater., 29, 1606405(2017).

    [23] S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, P. Tian. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces, 10, 5641-5648(2018).

    [24] N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, M. D. Dawson. Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals. Opt. Mater. Express, 2, 250-260(2012).

    [25] H. Li, X. Chen, J. Guo, H. Chen. A 550  Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. Opt. Express, 22, 27203-27213(2014).

    [26] M. Xia, S. Zhu, J. Luo, Y. Xu, P. Tian, G. Niu, J. Tang. Ultrastable perovskite nanocrystals in all-inorganic transparent matrix for high-speed underwater wireless optical communication. Adv. Opt. Mater., 9, 2002239(2021).

    [27] K. James Singh, Y.-M. Huang, T. Ahmed, A.-C. Liu, S.-W. Huang Chen, F.-J. Liou, T. Wu, C.-C. Lin, C.-W. Chow, G.-R. Lin, H.-C. Kuo. Micro-LED as a promising candidate for high-speed visible light communication. Appl. Sci., 10, 7384(2020).

    [28] S.-W. H. Chen, Y.-M. Huang, Y.-H. Chang, Y. Lin, F.-J. Liou, Y.-C. Hsu, J. Song, J. Choi, C.-W. Chow, C.-C. Lin, R.-H. Horng, Z. Chen, J. Han, T. Wu, H.-C. Kuo. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photon., 7, 2228-2235(2020).

    [29] S.-W. H. Chen, Y.-M. Huang, K. James Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, H.-C. Kuo. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photon. Res., 8, 630-636(2020).

    [30] S.-W. Huang Chen, C.-C. Shen, T. Wu, Z.-Y. Liao, L.-F. Chen, J.-R. Zhou, C.-F. Lee, C.-H. Lin, C.-C. Lin, C.-W. Sher, P.-T. Lee, A.-J. Tzou, Z. Chen, H.-C. Kuo. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res., 7, 416-422(2019).

    [31] Y. H. Chang, Y. M. Huang, W. H. Gunawan, G. H. Chang, F. J. Liou, C. W. Chow, H. C. Kuo, Y. Liu, C. H. Yeh. 4.343-Gbit/s green semipolar (20-21) μ-LED for high speed visible light communication. IEEE Photon. J., 13, 7300204(2021).

    [32] H. Fu, Z. Lu, X.-H. Zhao, Y.-H. Zhang, S. P. DenBaars, S. Nakamura, Y. Zhao. Study of low-efficiency droop in semipolar (20-2-1) InGaN light-emitting diodes by time-resolved photoluminescence. J. Disp. Technol., 12, 736-741(2016).

    [33] M. Monavarian, A. Rashidi, A. Aragon, S. Oh, M. Nami, S. DenBaars, D. Feezell. Explanation of low efficiency droop in semipolar (20-2-1) InGaN/GaN LEDs through evaluation of carrier recombination coefficients. Opt. Express, 25, 19343-19353(2017).

    [34] C. Shen, T. Ng, J. Leonard, A. Pourhashemi, S. Nakamura, S. DenBaars, J. Speck, A. Alyamani, M. El-Desouki, B. Ooi. High-brightness semipolar (202-1) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. Opt. Lett., 41, 2608-2611(2016).

    [35] D.-H. Lee, J.-H. Lee, J.-S. Park, T.-Y. Seong, H. Amano. Improving the leakage characteristics and efficiency of GaN-based micro-light-emitting diode with optimized passivation. ECS J. Solid State Sci. Technol., 9, 055001(2020).

    [36] M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, S. P. DenBaars. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express, 26, 21324-21331(2018).

    [37] Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, D.-Y. Wang. Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res. Lett., 13, 247(2018).

    [38] L. Zhou, K. Yu, F. Yang, H. Cong, N. Wang, J. Zheng, Y. Zuo, C. Li, B. Cheng, Q. Wang. Insight into the effect of ligand-exchange on colloidal CsPbBr3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: much faster electron injection. J. Mater. Chem. C, 5, 6224-6233(2017).

    [39] M. F. Leitão, M. S. Islim, L. Yin, S. Viola, S. Watson, A. Kelly, X. Li, D. Yu, H. Zeng, S. Videv, H. Haas, E. Gu, N. Laurand, M. D. Dawson. MicroLED-pumped perovskite quantum dot color converter for visible light communications. IEEE Photonics Conference (IPC), 69-70(2017).

    [40] C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, W. W. Yu. White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication. Nanomaterials, 6, 13(2016).

    [41] H. Cao, S. Lin, Z. Ma, X. Li, J. Li, L. Zhao. Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth. IEEE Electron Device Lett., 40, 267-270(2019).

    [42] M. Leitão, M. Islim, L. Yin, S. Viola, S. Watson, A. Kelly, Y. Dong, X. Li, H. Zeng, S. Videv, H. Haas, E. Gu, I. Watson, N. Laurand, M. Dawson. Pump-power-dependence of a CsPbBr3-in-Cs4PbBr6 quantum dot color converter. Opt. Mater. Express, 9, 3504-3518(2019).

    [43] C. Yeh, Y. Liu, C. Chow. Real-time white-light phosphor-LED visible light communication (VLC) with compact size. Opt. Express, 21, 26192-26197(2013).

    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341
    Download Citation