• Photonics Research
  • Vol. 9, Issue 12, 2341 (2021)
Konthoujam James Singh1、2, Xiaotong Fan3, Annada Sankar Sadhu1、2, Chun-Ho Lin4, Fang-Jyun Liou1, Tingzhu Wu3、7、*, Yu-Jung Lu5, Jr-Hau He6, Zhong Chen3, Tom Wu4, and Hao-Chung Kuo1、8、*
Author Affiliations
  • 1Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 2International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 3Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
  • 4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
  • 5Research Center for Applied Sciences, Academia Sinica, Taipei 11529, China
  • 6Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
  • 7e-mail: wutingzhu@xmu.edu.cn
  • 8e-mail: hckuo@faculty.nctu.edu.tw
  • show less
    DOI: 10.1364/PRJ.434270 Cite this Article Set citation alerts
    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341 Copy Citation Text show less
    (a) Schematic of semipolar micro-LED structure; (b) optical microscopy image of micro-LED.
    Fig. 1. (a) Schematic of semipolar micro-LED structure; (b) optical microscopy image of micro-LED.
    Fabrication of white-light system.
    Fig. 2. Fabrication of white-light system.
    (a) XRD patterns, (b) TEM images; inset: ×5,000,000 resolution, and (c) PL and UV absorption spectra of the PQD paper.
    Fig. 3. (a) XRD patterns, (b) TEM images; inset: ×5,000,000 resolution, and (c) PL and UV absorption spectra of the PQD paper.
    (a) L–I–V characteristics of semipolar micro-LED; (b) EL spectra of semipolar micro-LED with increasing injection current; (c) peak wavelengths of c-plane and semipolar micro-LEDs for 1−1200 A/cm2 current density; (d) TRPL curves for semipolar micro-LED and PQD and CdSe QD papers.
    Fig. 4. (a) L–I–V characteristics of semipolar micro-LED; (b) EL spectra of semipolar micro-LED with increasing injection current; (c) peak wavelengths of c-plane and semipolar micro-LEDs for 11200A/cm2 current density; (d) TRPL curves for semipolar micro-LED and PQD and CdSe QD papers.
    (a) White-light spectrum generated using semipolar micro-LED and PQD and CdSe QD papers. Inset: photograph of flexible white-light system. (b) Color gamut of white-light system according to CIE 1931 color space under various current densities.
    Fig. 5. (a) White-light spectrum generated using semipolar micro-LED and PQD and CdSe QD papers. Inset: photograph of flexible white-light system. (b) Color gamut of white-light system according to CIE 1931 color space under various current densities.
    Schematic of experimental setup for VLC bandwidth measurement.
    Fig. 6. Schematic of experimental setup for VLC bandwidth measurement.
    (a) Frequency responses for semipolar blue micro-LED; inset: eye diagram. (b) Comparison of bandwidth of PQD paper in nanostructure with that of PQD film; inset: eye diagram for PQD paper.
    Fig. 7. (a) Frequency responses for semipolar blue micro-LED; inset: eye diagram. (b) Comparison of bandwidth of PQD paper in nanostructure with that of PQD film; inset: eye diagram for PQD paper.
    Benchmark of 3 dB bandwidth for QDs with applied current.
    Fig. 8. Benchmark of 3 dB bandwidth for QDs with applied current.
    Materials TypeDecay Lifetime (τ)BandwidthData RateReferences
    CsPbBr3 PQDs paper5.92 ns229 MHz400 MbpsThis work
    CsPbBr3 nanocrystals5.93 ns180 MHz185 Mbps[26]
    CsPbBr1.8I1.2 PQDs43.74 ns70 MHz150 Mbps[23]
    CsPbBr3 PQDs in CsPb4Br6 matrix24.6 MHz364 Mbps[39]
    AgInS2/ZnS QDs77 ns5.4 MHz[40]
    CdSe/ZnS QDs17.24 ns23.1 MHz[41]
    CsPbBr3-in-Cs4PbBr6 QDs7 ns41 MHz380 Mbps[42]
    CdSe/ZnS QDs26.31 ns2.70 MHz[15]
    Table 1. Overview of Reported QDs for VLC
    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341
    Download Citation