• Photonics Research
  • Vol. 9, Issue 12, 2341 (2021)
Konthoujam James Singh1、2, Xiaotong Fan3, Annada Sankar Sadhu1、2, Chun-Ho Lin4, Fang-Jyun Liou1, Tingzhu Wu3、7、*, Yu-Jung Lu5, Jr-Hau He6, Zhong Chen3, Tom Wu4, and Hao-Chung Kuo1、8、*
Author Affiliations
  • 1Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 2International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 3Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
  • 4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
  • 5Research Center for Applied Sciences, Academia Sinica, Taipei 11529, China
  • 6Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
  • 7e-mail: wutingzhu@xmu.edu.cn
  • 8e-mail: hckuo@faculty.nctu.edu.tw
  • show less
    DOI: 10.1364/PRJ.434270 Cite this Article Set citation alerts
    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341 Copy Citation Text show less
    Cited By
    Article index updated: Apr. 3, 2024
    Citation counts are provided from Web of Science. The counts may vary by service, and are reliant on the availability of their data.
    The article is cited by 28 article(s) from Web of Science.
    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341
    Download Citation