• Photonics Research
  • Vol. 9, Issue 12, 2341 (2021)
Konthoujam James Singh1、2, Xiaotong Fan3, Annada Sankar Sadhu1、2, Chun-Ho Lin4, Fang-Jyun Liou1, Tingzhu Wu3、7、*, Yu-Jung Lu5, Jr-Hau He6, Zhong Chen3, Tom Wu4, and Hao-Chung Kuo1、8、*
Author Affiliations
  • 1Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 2International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
  • 3Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
  • 4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
  • 5Research Center for Applied Sciences, Academia Sinica, Taipei 11529, China
  • 6Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
  • 7e-mail: wutingzhu@xmu.edu.cn
  • 8e-mail: hckuo@faculty.nctu.edu.tw
  • show less
    DOI: 10.1364/PRJ.434270 Cite this Article Set citation alerts
    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341 Copy Citation Text show less

    Abstract

    We propose a flexible white-light system for high-speed visible-light communication (VLC) applications, which consists of a semipolar blue InGaN/GaN single-quantum-well micro-light-emitting diode (LED) on a flexible substrate pumping green CsPbBr3 perovskite quantum-dot (PQD) paper in nanostructure form and red CdSe QD paper. The highest bandwidth for CsPbBr3 PQD paper, 229 MHz, is achieved with a blue micro-LED pumping source and a high data transmission rate of 400 Mbps; this is very promising for VLC application. An 817 MHz maximum bandwidth and a 1.5 Gbps transmission speed are attained by the proposed semipolar blue micro-LEDs. The proposed flexible white light system and the high-bandwidth PQD paper could pave the way for VLC wearable devices.
    τavg=A1τ1+A2τ2A1+A2,

    View in Article

    τ=ΔnR=1B(no+po+Δn),

    View in Article

    f3dB=32πτ=32π(1τr+1τnr+1τRC),

    View in Article

    1τdiff=2πf3dB.

    View in Article

    Konthoujam James Singh, Xiaotong Fan, Annada Sankar Sadhu, Chun-Ho Lin, Fang-Jyun Liou, Tingzhu Wu, Yu-Jung Lu, Jr-Hau He, Zhong Chen, Tom Wu, Hao-Chung Kuo. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication[J]. Photonics Research, 2021, 9(12): 2341
    Download Citation