• Journal of Semiconductors
  • Vol. 41, Issue 7, 072902 (2020)
Xiuxin Xia1、2, Xiaoxi Li1、2, and Hanwen Wang1、2
Author Affiliations
  • 1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 2School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 China
  • show less
    DOI: 10.1088/1674-4926/41/7/072902 Cite this Article
    Xiuxin Xia, Xiaoxi Li, Hanwen Wang. Metal–insulator transition in few-layered GaTe transistors[J]. Journal of Semiconductors, 2020, 41(7): 072902 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] A K Geim, I V Grigorieva. Van der Waals heterostructures. Nature, 499, 419(2013).

    [3] Y Liu, N O Weiss, X Duan et al. Van der Waals heterostructures and devices. Nat Rev Mater, 1, 1(2016).

    [4] Y Saito, Y Iwasa. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 9, 3192(2015).

    [5] Z Wang, T Zhang, M Ding et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 13, 554(2018).

    [6] R Saito, M Fujita, G Dresselhaus et al. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204(1992).

    [7] K F Mak, K L McGill, J Park et al. The valley Hall effect in MoS2 transistors. Science, 344, 1489(2014).

    [8] B Huang, G Clark, D R Klein et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 13, 544(2018).

    [9] X Wang, J Tang, X Xia et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 5, eaaw8904(2019).

    [10] N Mott. Metal–insulator transition. Rev Mod Phys, 40, 677(1968).

    [11] S Kravchenko, D Simonian, M Sarachik et al. Electric field scaling at a B = 0 metal-insulator transition in two dimensions. Phys Rev Lett, 77, 4938(1996).

    [12] A J Frenzel, A S McLeod, D Z R Wang et al. Infrared nanoimaging of the metal–insulator transition in the charge-density-wave van der Waals material 1T-TaS2. Phys Rev B, 97, 035111(2018).

    [13] B Radisavljevic, A Kis. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 12, 815(2013).

    [14] L Ponomarenko, A Geim, A Zhukov et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat Phys, 7, 958(2011).

    [15] C Cen, S Thiel, G Hammerl et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat Mater, 7, 298(2008).

    [16] C L Wu, H Yuan, Y Li et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett, 18, 2387(2018).

    [17] P Patil, S Ghosh, M Wasala et al. Evidence of metal-insulator transition in 2D Van der Waals layers of copper indium selenide (CuIn7Se11). APS Meeting Abstracts(2019).

    [18] G Duvjir, B K Choi, I Jang et al. Emergence of a metal–insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett, 18, 5432(2018).

    [19] Y Cao, V Fatemi, S Fang et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

    [20] F Liu, H Shimotani, H Shang et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 8, 752(2014).

    [21] S Huang, Y Tatsumi, X Ling et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 10, 8964(2016).

    [22] J Kang, V K Sangwan, H S Lee et al. Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics, 5, 3996(2018).

    [23] Z Wang, M Safdar, M Mirza et al. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 7, 7252(2015).

    [24] H Wang, M L Chen, M Zhu et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat Commun, 10, 1(2019).

    [25] H Cai, B Chen, G Wang et al. Synthesis of highly anisotropic semiconducting GaTe nanomaterials and emerging properties enabled by epitaxy. Adv Mater, 29, 1605551(2017).

    [26] Z Wang, K Xu, Y Li et al. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano, 8, 4859(2014).

    [27] A Castellanos-Gomez, M Buscema, R Molenaar et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater, 1, 011002(2014).

    [28] J Feng, X Qian, C W Huang et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 6, 866(2012).

    [29] Y Cui, R Xin, Z Yu et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv Mater, 27, 5230(2015).

    [30] H C Movva, A Rai, S Kang et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 9, 10402(2015).

    [31] B Radisavljevic, A Radenovic, J Brivio et al. Single-layer MoS2 transistors. Nat Nanotechnol, 6, 147(2011).

    [32] D Ovchinnikov, A Allain, Y S Huang et al. Electrical transport properties of single-layer WS2. ACS Nano, 8, 8174(2014).

    [33] C R Dean, A F Young, I Meric et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 5, 722(2010).

    Xiuxin Xia, Xiaoxi Li, Hanwen Wang. Metal–insulator transition in few-layered GaTe transistors[J]. Journal of Semiconductors, 2020, 41(7): 072902
    Download Citation