• Photonics Research
  • Vol. 10, Issue 7, 1712 (2022)
Vassily Kornienko*, David Andersson, Mehdi Stiti, Jonas Ravelid, Simon Ek, Andreas Ehn, Edouard Berrocal, and Elias Kristensson
Author Affiliations
  • Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden
  • show less
    DOI: 10.1364/PRJ.451108 Cite this Article Set citation alerts
    Vassily Kornienko, David Andersson, Mehdi Stiti, Jonas Ravelid, Simon Ek, Andreas Ehn, Edouard Berrocal, Elias Kristensson. Simultaneous multiple time scale imaging for kHz–MHz high-speed accelerometry[J]. Photonics Research, 2022, 10(7): 1712 Copy Citation Text show less
    References

    [1] T. Hirata, Z. Miyazaki. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry. Anal. Chem., 79, 52-147(2007).

    [2] J. E. Field, E. Amer, P. Gren, M. A. Zafar, S. M. Walley. High-speed photographic study of laser damage and ablation. Imaging Sci. J., 63, 119-136(2015).

    [3] H. Mikami, C. Lei, N. Nitta, T. Sugimura, T. Ito, Y. Ozeki, K. Goda. High-speed imaging meets single-cell analysis. Chem, 4, 2278-2300(2018).

    [4] C. K. Haluska, K. A. Riske, V. Marchi-Artzner, J.-M. Lehn, R. Lipowsky, R. Dimova. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc. Natl. Acad. Sci. USA, 103, 15841-15846(2006).

    [5] H. Xing, Q. Zhang, C. Braithwaite, B. Pan, J. Zhao. High-speed photography and digital optical measurement techniques for geomaterials: fundamentals and applications. Rock Mech. Rock Eng., 50, 1611-1659(2017).

    [6] H. Etoh. A high-speed video camera operating at 4500 fps. J. Inst. Telev. Eng. Jpn., 46, 543-545(1992).

    [7] M. Suzuki, Y. Sugama, R. Kuroda, S. Sugawa. Over 100 million frames per second 368 frames global shutter burst CMOS image sensor with pixel-wise trench capacitor memory array. Sensors, 20, 1086(2020).

    [8] J. Manin, S. A. Skeen, L. M. Pickett. Performance comparison of state-of-the-art high-speed video cameras for scientific applications. Opt. Eng., 57, 121706(2018).

    [9] V. T. S. Dao, N. Ngo, A. Q. Nguyen, K. Morimoto, K. Shimonomura, P. Goetschalckx, L. Haspeslagh, P. De Moor, K. Takehara, T. G. Etoh. An image signal accumulation multi-collection-gate image sensor operating at 25 Mfps with 32 × 32 pixels and 1220 in-pixel frame memory. Sensors, 18, 3112(2018).

    [10] O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, M. Versluis. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl. Acad. Sci. USA, 111, 1697-1702(2014).

    [11] K. Kooiman, H. J. Vos, M. Versluis, N. de Jong. Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Delivery Rev., 72, 28-48(2014).

    [12] I. Beekers, M. Vegter, K. R. Lattwein, F. Mastik, R. Beurskens, A. F. van der Steen, N. de Jong, M. D. Verweij, K. Kooiman. Opening of endothelial cell–cell contacts due to sonoporation. J. Controlled Release, 322, 426-438(2020).

    [13] A. Gleason, C. Bolme, H. Lee, B. Nagler, E. Galtier, D. Milathianaki, R. Kraus, J. Eggert, D. Fratanduono, G. Collins, R. Sandberg, W. Yang, W. Mao. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun., 6, 8191(2015).

    [14] P. A. Hart, A. Carpenter, L. Claus, D. Damiani, M. Dayton, F.-J. Decker, A. Gleason, P. Heimann, E. Hurd, E. McBride, S. Nelson, M. Sanchez, S. Song, D. Zhu. First X-ray test of the Icarus nanosecond-gated camera. Proc. SPIE, 11038, 110380Q(2019).

    [15] F. H. Zhang, S. T. Thoroddsen. Satellite generation during bubble coalescence. Phys. Fluids, 20, 022104(2008).

    [16] A. Roth, D. Frantz, W. Chaze, A. Corber, E. Berrocal. High-speed imaging database of water jet disintegration part I: quantitative imaging using liquid laser-induced fluorescence. Int. J. Multiph. Flow, 145, 103641(2021).

    [17] M. Alsved, A. Matamis, R. Bohlin, M. Richter, P.-E. Bengtsson, C.-J. Fraenkel, P. Medstrand, J. Löndahl. Exhaled respiratory particles during singing and talking. Aerosol Sci. Technol., 54, 1245-1248(2020).

    [18] M. Versluis. High-speed imaging in fluids. Exp. Fluids, 54, 1458(2013).

    [19] C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, D. Lohse. Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev. Sci. Instrum., 74, 5026-5034(2003).

    [20] X. Chen, J. Wang, M. Versluis, N. de Jong, F. S. Villanueva. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Rev. Sci. Instrum., 84, 063701(2013).

    [21] J. Liang, L. V. Wang. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

    [22] V. Kornienko, E. Kristensson, A. Ehn, A. Fourriere, E. Berrocal. Beyond MHz image recordings using LEDs and the frame concept. Sci. Rep., 10, 16650(2020).

    [23] K. Maassen, F. Poursadegh, C. Genzale. Spectral microscopy imaging system for high-resolution and high-speed imaging of fuel sprays. J. Eng. Gas Turbine Power, 142, 091004(2020).

    [24] D. Sedarsky, S. Idlahcen, J.-B. Blaisot, C. Rozé. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery. Exp. Fluids, 54, 1-12(2013).

    [25] L. Yin, M. Lundgren, Z. Wang, P. Stamatoglou, M. Richter, Ö. Andersson, P. Tunestål. High efficient internal combustion engine using partially premixed combustion with multiple injections. Appl. Energy, 233–234, 516-523(2019).

    [26] S. Li, D. Sanned, J. Huang, E. Berrocal, W. Cai, M. Aldén, M. Richter, Z. Li. Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release. Opt. Express, 29, 34465-34476(2021).

    [27] Y. Tang, C. Kong, Y. Zong, S. Li, J. Zhuo, Q. Yao. Combustion of aluminum nanoparticle agglomerates: from mild oxidation to microexplosion. Proc. Combust. Inst., 36, 2325-2332(2017).

    [28] M. Uddi, N. Jiang, E. Mintusov, I. V. Adamovich, W. R. Lempert. Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Proc. Combust. Inst., 32, 929-936(2009).

    [29] G. D. Stancu, F. Kaddouri, D. A. Lacoste, C. O. Laux. Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J. Phys. D, 43, 124002(2010).

    [30] S. Wang, J. Kang, Z. Guo, T. Lee, X. Zhang, Q. Wang, C. Deng, J. Mi. In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields. Acta Mater., 165, 388-397(2019).

    [31] A. van der Bos, M.-J. van der Meulen, T. Driessen, M. van den Berg, H. Reinten, H. Wijshoff, M. Versluis, D. Lohse. Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Phys. Rev. Appl., 1, 014004(2014).

    [32] J. J. Philo, M. D. Frederick, C. D. Slabaugh. 100 kHz PIV in a liquid-fueled gas turbine swirl combustor at 1 MPa. Proc. Combust. Inst., 38, 1571-1578(2021).

    [33] A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, E. Kristensson. Frame: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

    [34] S. Ek, V. Kornienko, E. Kristensson. Long sequence single-exposure videography using spatially modulated illumination. Sci. Rep., 10, 18920(2020).

    [35] Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, E. Berrocal. Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays. Exp. Fluids, 58, 110(2017).

    [36] D. Sedarsky, J. Gord, C. Carter, T. Meyer, M. Linne. Fast-framing ballistic imaging of velocity in an aerated spray. Opt. Lett., 34, 2748-2750(2009).

    [37] J. Fielding, M. B. Long, G. Fielding, M. Komiyama. Systematic errors in optical-flow velocimetry for turbulent flows and flames. Appl. Opt., 40, 757-764(2001).

    [38] D. Sedarsky, M. Rahm, M. Linne. Visualization of acceleration in multiphase fluid interactions. Opt. Lett., 41, 1404-1407(2016).

    [39] K. Christensen, R. Adrian. Measurement of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy. Exp. Fluids, 33, 759-769(2002).

    [40] J. Eggers, E. Villermaux. Physics of liquid jets. Rep. Prog. Phys., 71, 036601(2008).

    [41] C. Shao, K. Luo, J. Fan. Detailed numerical simulation of unsteady drag coefficient of deformable droplet. Chem. Eng. J., 308, 619-631(2017).

    [42] I. Silverman, W. Sirignano. Multi-droplet interaction effects in dense sprays. Int. J. Multiph. Flow, 20, 99-116(1994).

    [43] T. Etoh, A. Nguyen, Y. Kamakura, K. Shimonomura, T. Le, N. Mori. The theoretical highest frame rate of silicon image sensors. Sensors, 17, 483(2017).

    [44] J. E. Chomas, P. A. Dayton, D. May, J. Allen, A. Klibanov, K. Ferrara. Optical observation of contrast agent destruction. Appl. Phys. Lett., 77, 1056-1058(2000).

    [45] R. Adrian. Twenty years of particle image velocimetry. Exp. Fluids, 39, 159-169(2005).

    [46] T. Kondo, Y. Takemoto, N. Takazawa, M. Tsukimura, H. Saito, H. Kato, J. Aoki, S. Suzuki, Y. Gomi, S. Matsuda, Y. Tadaki. A 3D stacked global-shutter image sensor with pixel-level interconnection technology for high-speed image capturing. Proc. SPIE, 10328, 1032804(2017).

    [47] A. H. Zewail. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A, 104, 5660-5694(2000).

    Vassily Kornienko, David Andersson, Mehdi Stiti, Jonas Ravelid, Simon Ek, Andreas Ehn, Edouard Berrocal, Elias Kristensson. Simultaneous multiple time scale imaging for kHz–MHz high-speed accelerometry[J]. Photonics Research, 2022, 10(7): 1712
    Download Citation