• Journal of Semiconductors
  • Vol. 44, Issue 6, 061802 (2023)
Xing Lu*, Yuxin Deng*, Yanli Pei*, Zimin Chen*, and Gang Wang*
Author Affiliations
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
  • show less
    DOI: 10.1088/1674-4926/44/6/061802 Cite this Article
    Xing Lu, Yuxin Deng, Yanli Pei, Zimin Chen, Gang Wang. Recent advances in NiO/Ga2O3 heterojunctions for power electronics[J]. Journal of Semiconductors, 2023, 44(6): 061802 Copy Citation Text show less
    References

    [1] X She, A Q Huang, Ó Lucía et al. Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron, 64, 8193(2017).

    [2] E A Jones, F F Wang, D Costinett. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J Emerg Sel Top Power Electron, 4, 707(2016).

    [3] A K Saikumar, S D Nehate, K B Sundaram. Review—RF sputtered films of Ga2O3. ECS J Solid State Sci Technol, 8, Q3064(2019).

    [4] S J Pearton, J C Yang, P H Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [5] H Zhou, J C Zhang, C F Zhang et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 40, 011803(2019).

    [6] S Yoshioka, H Hayashi, A Kuwabara et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 19, 346211(2007).

    [7] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [8] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A2(2016).

    [9] F Alema, Y W Zhang, A Osinsky et al. Low temperature electron mobility exceeding 104 cm2/V s in MOCVD grown β-Ga2O3. APL Mater, 7, 121110(2019).

    [10] Y W Zhang, F Alema, A Mauze et al. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater, 7, 022506(2018).

    [11] Y P Chen, X C Xia, H W Liang et al. Growth pressure controlled nucleation epitaxy of pure phase ε- and β-Ga2O3 films on Al2O3 via metal–organic chemical vapor deposition. Cryst Growth Des, 18, 1147(2018).

    [12] S A Kukushkin, V I Nikolaev, A V Osipov et al. Epitaxial gallium oxide on a SiC/Si substrate. Phys Solid State, 58, 1876(2016).

    [13] H L Wei, Z W Chen, Z P Wu et al. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy. AIP Adv, 7, 115216(2017).

    [14] K Sasaki, M Higashiwaki, A Kuramata et al. MBE grown Ga2O3 and its power device applications. J Cryst Growth, 378, 591(2013).

    [15] C Joishi, S Rafique, Z B Xia et al. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes. Appl Phys Express, 11, 031101(2018).

    [16] M Baldini, M Albrecht, A Fiedler et al. Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates. ECS J Solid State Sci Technol, 6, Q3040(2016).

    [17] J B Varley, A Janotti, C Franchini et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 85, 081109(2012).

    [18] J L Lyons. A survey of acceptor dopants for β. Semicond Sci Technol, 33, 05LT02(2018).

    [19] J C Yang, M H Xian, P Carey et al. Vertical geometry 33.2 A, 4.8 MW cm2 Ga2O3 field-plated Schottky rectifier arrays. Appl Phys Lett, 114, 232106(2019).

    [20] H Zhou, Q L Yan, J C Zhang et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination. IEEE Electron Device Lett, 40, 1788(2019).

    [21] W S Li, K Nomoto, Z Y Hu et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron, sp of up to 0.95 GW/cm2. IEEE Electron Device Lett, 41, 107(2020).

    [22] Z A Jian, S Mohanty, E Ahmadi. Switching performance analysis of 3.5 kV Ga2O3 power FinFETs. IEEE Trans Electron Devices, 68, 672(2021).

    [23] S Nakagomi, K Hiratsuka, Y Kakuda et al. Beta-gallium oxide/SiC heterojunction diodes with high rectification ratios. ECS J Solid State Sci Technol, 6, Q3030(2016).

    [24] Y C Zhang, Y F Li, Z Z Wang et al. Investigation of β-Ga2O3 films and β-Ga2O3/GaN heterostructures grown by metal organic chemical vapor deposition. Sci China Phys Mech Astron, 63, 117311(2020).

    [25] Y G Wang, H H Gong, Y J Lv et al. 2.41 kV vertical P-NiO/n-Ga2O3 heterojunction diodes with a record Baliga’s figure-of-merit of 5.18 GW/cm2. IEEE Trans Power Electron, 37, 3743(2022).

    [26] Y Kokubun, S Kubo, S Nakagomi. All-oxide p–n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3. Appl Phys Express, 9, 091101(2016).

    [27] X Lu, X D Zhou, H X Jiang et al. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2. IEEE Electron Device Lett, 41, 449(2020).

    [28] T Watahiki, Y Yuda, A Furukawa et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 111, 222104(2017).

    [29] M Budde, D Splith, P Mazzolini et al. SnO/β-Ga2O3 vertical pn heterojunction diodes. Appl Phys Lett, 117, 252106(2020).

    [30] J C Gallagher, A D Koehler, M J Tadjer et al. Demonstration of CuI as a P–N heterojunction to β. Appl Phys Express, 12, 104005(2019).

    [31] H L Chen, Y M Lu, W S Hwang. Characterization of sputtered NiO thin films. Surf Coat Technol, 198, 138(2005).

    [32] Y J Lv, Y G Wang, X C Fu et al. Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga’s figure of merit of 0.85 GW/cm2 or a 5A/700 V handling capabilities. IEEE Trans Power Electron, 36, 6179(2021).

    [33] C L Wang, H H Gong, W N Lei et al. Demonstration of the p-NiOx/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron, sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett, 42, 485(2021).

    [34] Q L Yan, H H Gong, H Zhou et al. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination. Appl Phys Lett, 120, 092106(2022).

    [35] Y B Wang, H H Gong, X L Jia et al. Demonstration of β-Ga2O3 superjunction-equivalent MOSFETs. IEEE Trans Electron Devices, 69, 2203(2022).

    [36] Y Wang, Q Z Qin. A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries. J Electrochem Soc, 149, A873(2002).

    [37] M Jlassi, I Sta, M Hajji et al. Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating. Mater Sci Semicond Process, 21, 7(2014).

    [38] J H Park, J Seo, S Park et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater, 27, 4013(2015).

    [39] I Hotový, D Búc, Š Haščík et al. Characterization of NiO thin films deposited by reactive sputtering. Vacuum, 50, 41(1998).

    [40] M Budde, T Remmele, C Tschammer et al. Plasma-assisted molecular beam epitaxy of NiO on GaN(00.1). J Appl Phys, 127, 015306(2020).

    [41] M J Tadjer, L E Luna, E Cleveland et al. Fabrication and characterization of β-Ga2O3 heterojunction rectifiers. ECS Trans, 85, 21(2018).

    [42] F Hajakbari. Characterization of nanocrystalline nickel oxide thin films prepared at different thermal oxidation temperatures. J Nanostruct Chem, 10, 97(2020).

    [43] M I Pintor-Monroy, D Barrera, B L Murillo-Borjas et al. Tunable electrical and optical properties of nickel oxide (NiOx) thin films for fully transparent NiOx-Ga2O3 p-n junction diodes. ACS Appl Mater Interfaces, 10, 38159(2018).

    [44] P Schlupp, D Splith, H von Wenckstern et al. Electrical properties of vertical p-NiO/n-Ga2O3 and p-ZnCo2O4/n-Ga2O3 pn-heterodiodes. Phys Status Solidi A, 216, 1800729(2019).

    [45] J Y Zhang, S B Han, M Y Cui et al. Fabrication and interfacial electronic structure of wide bandgap NiO and Ga2O3 p–n heterojunction. ACS Appl Electron Mater, 2, 456(2020).

    [46] K H Li, N Alfaraj, C H Kang et al. Deep-ultraviolet photodetection using single-crystalline β-Ga2O3/NiO heterojunctions. ACS Appl Mater Interfaces, 11, 35095(2019).

    [47] Y X Deng, Z Q Yang, T L Xu et al. Band alignment and electrical properties of NiO/β-Ga2O3 heterojunctions with different β-Ga2O3 orientations. Appl Surf Sci, 622, 156917(2023).

    [48] H X Luo, X D Zhou, Z M Chen et al. Fabrication and characterization of high-voltage NiO/β-Ga2O3 heterojunction power diodes. IEEE Trans Electron Devices, 68, 3991(2021).

    [49] C Liao, X Lu, T L Xu et al. Optimization of NiO/β-Ga2O3 heterojunction diodes for high-power application. IEEE Trans Electron Devices, 69, 5722(2022).

    [50] H H Gong, X H Chen, Y Xu et al. Band alignment and interface recombination in NiO/β-Ga2O3 type-II p-n heterojunctions. IEEE Trans Electron Devices, 67, 3341(2020).

    [51] Z Guo, A Verma, X F Wu et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl Phys Lett, 106, 111909(2015).

    [52] M H Wong, K Sasaki, A Kuramata et al. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn J Appl Phys, 55, 1202B9(2016).

    [53] S Jang, S Jung, K Beers et al. A comparative study of wet etching and contacts on ( 2¯01 ) and (010) oriented β-Ga2O3. J Alloys Compd, 731, 118(2018).

    [54] K Zhang, Z W Xu, J L Zhao et al. Anisotropies of angle-resolved polarized Raman response identifying in low miller index β-Ga2O3 single crystal. Appl Surf Sci, 581, 152426(2022).

    [55] R Yatskiv, S Tiagulskyi, J Grym. Influence of crystallographic orientation on Schottky barrier formation in gallium oxide. J Electron Mater, 49, 5133(2020).

    [56] H Q Fu, H Chen, X Q Huang et al. A comparative study on the electrical properties of vertical ( 2¯01 ) and (010) β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates. IEEE Trans Electron Devices, 65, 3507(2018).

    [57] X Y Xia, J S Li, C C Chiang et al. Annealing temperature dependence of band alignment of NiO/β-Ga2O3. J Phys D: Appl Phys, 55, 385105(2022).

    [58] Z P Wang, H H Gong, C X Meng et al. Majority and minority carrier traps in NiO/β-Ga2O3 p-n heterojunction diode. IEEE Trans Electron Devices, 69, 981(2022).

    [59] M Grundmann, R Karsthof, H von Wenckstern. Interface recombination current in type II heterostructure bipolar diodes. ACS Appl Mater Interfaces, 6, 14785(2014).

    [60] A R Riben, D L Feucht. Electrical transport in nGe-pGaAs heterojunctions. Int J Electron, 20, 583(1966).

    [61] A R Riben, D L Feucht. nGe–pGaAs heterojunctions. Solid State Electron, 9, 1055(1966).

    [62] J C Zhang, P F Dong, K Dang et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat Commun, 13, 3900(2022).

    [63] Z P Wang, H H Gong, X X Yu et al. Trap-mediated bipolar charge transport in NiO/Ga2O3 p+-n heterojunction power diodes. Sci China Mater, 66, 1157(2022).

    [64] C Zimmermann, Y K Frodason, A W Barnard et al. Ti- and Fe-related charge transition levels in β-Ga2O3. Appl Phys Lett, 116, 072101(2020).

    [65] M E Ingebrigtsen, J B Varley, A Y Kuznetsov et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 112, 042104(2018).

    [66] W B Hao, Q M He, K Zhou et al. Low defect density and small I − V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl Phys Lett, 118, 043501(2021).

    [67] H H Gong, X X Yu, Y Xu et al. Vertical field-plated NiO/Ga2O3 heterojunction power diodes. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 1(2021).

    [68] H H Gong, X H Chen, Y Xu et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl Phys Lett, 117, 022104(2020).

    [69] J S Li, C C Chiang, X Y Xia et al. Demonstration of 4.7 kV breakdown voltage in NiO/β-Ga2O3 vertical rectifiers. Appl Phys Lett, 121, 042105(2022).

    [70] F Zhou, H H Gong, Z P Wang et al. Over 1.8 GW/cm2 beveled-mesa NiO/β-Ga2O3 heterojunction diode with 800 V/10 A nanosecond switching capability. Appl Phys Lett, 119, 262103(2021).

    [71] H H Gong, X X Yu, Y Xu et al. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl Phys Lett, 118, 202102(2021).

    [72] C De Santi, M Fregolent, M Buffolo et al. Carrier capture kinetics, deep levels, and isolation properties of β-Ga2O3 Schottky-barrier diodes damaged by nitrogen implantation. Appl Phys Lett, 117, 262108(2020).

    [73] Q L Yan, H H Gong, J C Zhang et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2. Appl Phys Lett, 118, 122102(2021).

    [74] A Y Polyakov, I H Lee, N B Smirnov et al. Defects at the surface of β-Ga2O3 produced by Ar plasma exposure. APL Mater, 7, 061102(2019).

    [75] G Alfieri, A Mihaila, P Godignon et al. Deep level study of chlorine-based dry etched β-Ga2O3. J Appl Phys, 130, 025701(2021).

    [76] X Lu, T L Xu, Y X Deng et al. Performance-enhanced NiO/β-Ga2O3 heterojunction diodes fabricated on an etched β-Ga2O3 surface. Appl Surf Sci, 597, 153587(2022).

    [77] Y J Lv, X Y Zhou, S B Long et al. Lateral source field-plated β-Ga2O3 MOSFET with recorded breakdown voltage of 2360 V and low specific on-resistance of 560 mΩ cm2. Semicond Sci Technol, 34, 11LT02(2019).

    [78] J K Mun, K Cho, W Chang et al. Editors' choice—2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate. ECS J Solid State Sci Technol, 8, Q3079(2019).

    [79] K Tetzner, E Bahat Treidel, O Hilt et al. Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit. IEEE Electron Device Lett, 40, 1503(2019).

    [80] Y J Lv, H Y Liu, X Y Zhou et al. Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2. IEEE Electron Device Lett, 41, 537(2020).

    [81] X Z Zhou, Q Liu, W B Hao et al. Normally-off β-Ga2O3 power heterojunction field-effect-transistor realized by p-NiO and recessed-gate. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 101(2022).

    [82] K Konishi, K Goto, H Murakami et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [83] Y N Zhang, J C Zhang, Z Q Feng et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing. IEEE Trans Electron Devices, 67, 3948(2020).

    [84] Y Y Gao, A Li, Q Feng et al. High-voltage β-Ga2O3 Schottky diode with argon-implanted edge termination. Nanoscale Res Lett, 14, 8(2019).

    [85] Y G Wang, Y J Lv, S B Long et al. High-voltage (-201) β-Ga2O3 vertical Schottky barrier diode with thermally-oxidized termination. IEEE Electron Device Lett, 41, 131(2020).

    [86] T Hirao, H Onose, Y S Kan et al. Edge termination with enhanced field-limiting rings insensitive to surface charge for high-voltage SiC power devices. IEEE Trans Electron Devices, 67, 2850(2020).

    [87] T Fujihira. Theory of semiconductor superjunction devices. Jpn J Appl Phys, 36, 6254(1997).

    [88] G Deboy, N Marz, J P Stengl et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. International Electron Devices Meeting, 683(1998).

    [89] L Lorenz, G Deboy, A Knapp et al. COOLMOS/sup TM/-a new milestone in high voltage power MOS. 11th International Symposium on Power Semiconductor Devices and ICs, 3(1999).

    [90] F Udrea, G Deboy, T Fujihira. Superjunction power devices, history, development, and future prospects. IEEE Trans Electron Devices, 64, 713(2017).

    [91] S G Nassif-Khalil, C A T Salama. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 50, 1385(2003).

    [92] B X Duan, Z Cao, X Yuan et al. New superjunction LDMOS breaking silicon limit by electric field modulation of buffered step doping. IEEE Electron Device Lett, 36, 47(2015).

    [93] M Xiao, R Z Zhang, D Dong et al. Design and simulation of GaN superjunction transistors with 2-DEG channels and fin channels. IEEE J Emerg Sel Top Power Electron, 7, 1475(2019).

    [94] X Q Zhong, B Z Wang, J Wang et al. Experimental demonstration and analysis of a 1.35-kV 0.92-m Ω·cm2 SiC superjunction Schottky diode. IEEE Trans Electron Devices, 65, 1458(2018).

    [95] A Nakajima, Y Sumida, M H Dhyani et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett, 32, 542(2011).

    [96] H Wang, E Napoli, F Udrea. Breakdown voltage for superjunction power devices with charge imbalance: An analytical model valid for both punch through and non punch through devices. IEEE Trans Electron Devices, 56, 3175(2009).

    Xing Lu, Yuxin Deng, Yanli Pei, Zimin Chen, Gang Wang. Recent advances in NiO/Ga2O3 heterojunctions for power electronics[J]. Journal of Semiconductors, 2023, 44(6): 061802
    Download Citation