REVIEWS

Recent advances in NiO/Ga₂O₃ heterojunctions for power electronics

Xing Lu, Yuxin Deng, Yanli Pei, Zimin Chen, and Gang Wang[†]

State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China

Abstract: Beta gallium oxide (β -Ga₂O₃) has attracted significant attention for applications in power electronics due to its ultrawide bandgap of ~ 4.8 eV and the large critical electric field of 8 MV/cm. These properties yield a high Baliga's figures of merit (BFOM) of more than 3000. Though β -Ga₂O₃ possesses superior material properties, the lack of p-type doping is the main obstacle that hinders the development of β -Ga₂O₃-based power devices for commercial use. Constructing heterojunctions by employing other p-type materials has been proven to be a feasible solution to this issue. Nickel oxide (NiO) is the most promising candidate due to its wide band gap of 3.6–4.0 eV. So far, remarkable progress has been made in NiO/ β -Ga₂O₃ heterojunction power devices. This review aims to summarize recent advances in the construction, characterization, and device performance of the NiO/ β -Ga₂O₃ heterojunctions are discussed. Various device architectures, including the NiO/ β -Ga₂O₃ heterojunction pn diodes (HJDs), junction barrier Schottky (JBS) diodes, and junction field effect transistors (JFET), as well as the edge terminations and super-junctions based on the NiO/ β -Ga₂O₃ heterojunction, are described.

Key words: gallium oxide (Ga₂O₃); nickel oxide (NiO); heterojunction; power devices

Citation: X Lu, Y X Deng, Y L Pei, Z M Chen, and G Wang, Recent advances in NiO/Ga₂O₃ heterojunctions for power electronics[J]. *J. Semicond.*, 2023, 44(6), 061802. https://doi.org/10.1088/1674-4926/44/6/061802

1. Introduction

Power devices have been widely used in switch control and high-power circuit driving, which play an essential role in multiple applications. With the fast development of electric automobiles, fifth-generation (5G) networks, and the internet of things (IoT), silicon material has generally reached its physical limit, and traditional silicon-based power electronics have been hard to satisfy the demand for many ultra-high power applications. Wide bandgap semiconductor materials such as silicon carbide (SiC), gallium nitride (GaN), diamond, and gallium oxide (Ga₂O₃) possess attractive properties and are considered potential candidates for next-generation power devices^[1, 2]. Among these, Ga₂O₃ has attracted significant attention due to its large critical electric field of 8 MV/cm and the high Baliga's figure of merit (BFOM) of more than $3000^{[3-5]}$. The BFOM of Ga_2O_3 is much higher than that of Si, SiC, and GaN, indicating that Ga₂O₃-based devices can achieve higher breakdown voltage (BV) and lower specific on-resistance (Ron.sp) simultaneously. Table 1 compares the critical material parameters of several competing power electronics semiconductors. There are five phases of Ga₂O₃ labeled as α , β , γ , δ and ϵ . The monoclinic β -Ga₂O₃ is the most stable^[6] and is commonly studied in fabricating power devices. Largesize β -Ga₂O₃ bulk substrates can be synthesized by the lowcoat melt-growth methods, such as floating zone (FZ) and edge-defined film-fed growth (EFG)^[7, 8], providing significant benefits for future mass production of electronic devices. Fur-

Correspondence to: G Wang, stswangg@mail.sysu.edu.cn Received 27 DECEMBER 2022; Revised 24 FEBRUARY 2023.

©2023 Chinese Institute of Electronics

thermore, high-quality homoepitaxy of β -Ga₂O₃ thin films can be realized by halide vapor phase epitaxy (HVPE), metalorganic chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE)^[9–14].

N-type conduction in β -Ga₂O₃ with a tunable doping concentration ranging from 10¹⁵ to 10¹⁹ cm⁻³ has been demonstrated by Si and Sn doping^[8, 15, 16]. However, due to the large activation energy of acceptors and the large self-trapping energy of holes^[17, 18], p-type conduction in β -Ga₂O₃ is proven difficult. The absence of p-type β -Ga₂O₃ is a major obstacle limiting the design of β -Ga₂O₃-based bipolar devices. A bipolar structure usually possesses low leakage current, high thermal stability, and good surge handling capability, which is much preferred over the unipolar configuration for power electronics. However, due to the lack of p-type doping, the studies of β -Ga₂O₃ power devices are mainly focused on unipolar devices such as Schottky barrier diodes (SBDs) and metal-oxide-semiconductor field effect transistors (MOS-FETs)^[19–22]. To overcome the obstacle, one possible solution is employing other p-type semiconductors and forming heterojunctions with β -Ga₂O₃. Abundant investigations have been demonstrated on β -Ga₂O₃ heterojunctions using various ptype semiconductors such as SiC, GaN, SnO, Cu₂O, Cul, and NiO^[23-30]. Among these, NiO is considered the most promising choice owing to its wide bandgap of 3.6-4.0 eV and controllable p-type doping with decent mobility^[25-27, 31]. Very recently, the first kilovolt-class NiO/ β -Ga₂O₃ heterojunction pn diodes (HJDs) were successfully demonstrated by sputtering a p-NiO layer on β -Ga₂O₃, which opened up a route toward future bipolar operation of β -Ga₂O₃ power electronics^[27]. Following that, remarkable progress has been made by many researchers in improving the BFOM of the

Table 1. Material properties of Ga₂O₃ and some competing semiconductors for power electronics.

Material	Si	GaAs	4H-SiC	GaN	Diamond	Ga ₂ O ₃
Band gap (eV)	1.1	1.43	3.25	3.4	5.5	4.6-4.9
Critical electric field (MV/cm)	0.3	0.4	2.5	3.3	10	8
Electron mobility (cm ² /(V·s))	1480	8400	1000	1250	2000	300
Dielectric constant	11.8	12.9	9.7	9	5.5	10
Baliga FOM ($\epsilon \mu E_c^3$)	1	14.7	317	846	24660	>3000

NiO/ β -Ga₂O₃ HJDs. Furthermore, the NiO/ β -Ga₂O₃ heterojunction has been adopted into other device architectures such as junction barrier Schottky diodes (JBSs)^[32], junction field effect transistors (JFETs)^[33] and edge termination structures^[34, 35].

This paper presents a detailed overview of the recent progress in NiO/ β -Ga₂O₃ heterojunction power devices. Section 2 discusses the construction and characterization of the sputtered NiO/ β -Ga₂O₃ heterojunction, focusing on its crystallinity, band structure, and carrier transport property. Section 3 and section 4 deal with the device technologies, including the NiO/ β -Ga₂O₃ HJDs, JBSs, and JFETs, as well as the edge terminations and super-junctions based on the NiO/ β -Ga₂O₃ heterojunction.

2. Construction and characterization of NiO/β-Ga₂O₃ heterojunction

2.1. Construction of high-voltage NiO/β-Ga₂O₃ heterojunction

NiO thin films can be grown by several techniques such as sol-gel spin coating, radio frequency (RF) sputtering, pulsed laser deposition (PLD), atomic layer deposition (ALD), MBE, and thermal oxidation of Ni^[31, 36-42]. The initial study of NiO/ β -Ga₂O₃ heterojunction was reported by Kokubun *et al.* in 2016^[26]. A Li-doped NiO layer was grown on a 0.4-mmthick (100) β -Ga₂O₃ single-crystal substrate ($n = 5 \times 10^{17} \text{ cm}^{-3}$) by the sol-gel spin coating technique. The device schematic and current–voltage (I-V) characteristics of the sol-gel NiO/ β -Ga₂O₃ HJD are shown in Fig. 1. The device exhibited a high rectifying ratio of over 10^8 at ± 3 V. However, the large $R_{on.sp}$ of approximate 1 Ω·cm² and low BV of 46 V indicated a suboptimal device performance for power applications. Tadjer et al.^[41] reported the construction of NiO/ β -Ga₂O₃ HJDs using sputtered and ALD-deposited NiO thin films. However, the fabricated devices showed either a very low forward current or a high reverse leakage current, which failed to satisfy the demand for power electronics. The NiO/ β -Ga₂O₃ heterojunctions have also been fabricated by PLD for UV detection applications^[43-46], yet the problem of high reverse current still existed.

In 2020, the first kilovolt-class NiO/ β -Ga₂O₃ HJD was successfully demonstrated by sputtering a p-NiO thin film onto an epitaxial n⁻⁻ β -Ga₂O₃ drift layer^[27], as shown in Fig. 2. The NiO films were sputtered from a NiO target at room temperature and 3 mTorr pressure in a mixture of Ar/O₂ ambient with RF power of 150 W. According to the Hall measurement, the hole concentration and hall mobility of the NiO were 1 × 10¹⁹ cm⁻³ and 0.24 cm²/(V·s), respectively. The fabricated NiO/ β -Ga₂O₃ HJDs featured a high BV of over 1 kV with an ultra-low leakage current of below 1 μ A/cm², representing a

Fig. 1. (Color online) (a) Device schematic and (b) I-V characteristics of the sol-gel NiO/ β -Ga₂O₃ heterojunction diode. Reproduced from Ref. [26]. Copyright 2016, The Japan Society of Applied Physics.

key milestone for the development of NiO/ β -Ga₂O₃ heterojunction-based power devices. So far, RF sputtering has become the optimal method for depositing NiO on β -Ga₂O₃, and continuous breakthrough has been achieved in the NiO/ β -Ga₂O₃ heterojunction-based power devices.

2.2. Crystallinity and band structure of sputtered NiO/β-Ga₂O₃ heterojunction

X-ray diffraction (XRD) measurements and high-resolution transmission electron microscopy (HRTEM) observations have been used to investigate the crystallinity of the sputtered NiO/ β -Ga₂O₃ heterojunction. Several reports have identified that the sputtered NiO films were polycrystalline even after a post-deposition annealing (PDA) process^[25, 27, 47–49]. As shown in Fig. 3(a), three diffraction peaks located at around 37.3°, 43.2° and 63.1° could be observed in the XRD patterns of the sputtered NiO films, which corresponded to the (111), (200), and (220) planes of NiO, respectively^[48]. The HRTEM image in Fig. 3(b) also revealed that the sputtered NiO film was generally polycrystalline with fine nanocrystalline grains and a seamless contact was formed at the NiO/ β -Ga₂O₃ heterojunction interface. By comparing the XRD patterns and HRTEM images of the NiO films sputtered on (201), (001), and (010) oriented β -Ga₂O₃ substrates, a very recent study pointed out that the crystallinity of sputtered NiO showed no

Fig. 2. (Color online) (a) Schematic of the first kilovolt-class NiO/ β -Ga₂O₃ heterojunction diode. The (b) forward and (c) reverse *I–V* characteristics of the devices. Reproduced from Ref. [27]. Copyright 2020, IEEE.

Fig. 3. (Color online) (a) XRD patterns of the sputtered NiO film on sapphire before and after annealing. (b) Cross-sectional HRTEM images of the NiO/ β -Ga₂O₃ heterojunction interface. Reproduced from Ref. [48]. Copyright 2021, IEEE.

strong dependency on the β -Ga₂O₃ substrate orientations^[47].

It is known that the band structure of a heterojunction is crucial for device design and application. The band alignment of the heterojunction greatly influences its carrier transport properties. Thus it is essential to characterize the band offset at the heterojunction interface accurately. Gong *et al.*^[50] reported a type-II band alignment of the sputtered NiO/ β -Ga₂O₃ heterojunction with a valence band offset (VBO) of 3.60 eV and conduction band offset (CBO) of 2.68 eV. In comparison, Zhang *et al.*^[45] reported a VBO value of 2.1 eV and CBO value of 0.9 eV for a similar sputtered NiO/ β -Ga₂O₃ heterojunction. The band alignment of the sputtered NiO/ β -Ga₂O₃ heterojunctions varies from each other, which could be determined by many factors, such as the strain, defects/vacancies, interfacial contamination, crystal orientation, and so on. Due to the crystalline anisotropy, β -Ga₂O₃ possesses anisotropic material properties and devices with different orientations show different performances^[14, 51-56]. The substrate orientation-dependent band alignment of the NiO/ β -Ga₂O₃ heterojunctions was investigated by an X-ray photoelectron spectroscopy (XPS) analysis^[47]. The VBO values of the NiO/ β -Ga₂O₃ heterojunctions were extracted to be 2.12 ± 0.06 , 2.44 ± 0.07 , and 2.66 \pm 0.07 eV for ($\overline{2}$ 01), (001) and (010) β -Ga₂O₃ substrates, respectively. The determined energy band diagrams of the NiO/ β -Ga₂O₃ heterojunctions with different β -Ga₂O₃ orientations are shown in Fig. 4. The influence of a PDA process on the band alignment of the NiO/ β -Ga₂O₃ heterojunction was studied by Xia et al.^[57]. As shown in Fig. 5, the band offsets monotonically increased while the bandgap of NiO decreased with the elevated annealing temperature up to 600 °C. The results also indicated a possible unstable performance of the NiO/ β -Ga₂O₃ heterojunction device at high temperatures.

2.3. Carrier transport mechanisms in the sputtered NiO/β-Ga₂O₃ heterojunction

Several groups have identified different forward conduction mechanisms rather than the conventional diffusion theory in the NiO/ β -Ga₂O₃ heterojunction^[48, 50, 58]. Due to the high barrier height against carriers in the type-II band structure, the diffusion and emission currents in the NiO/ β -Ga₂O₃ heterojunction are negligible at a low forward bias. When the low forward bias is below 1.6 V, interface recombination has been revealed to be the dominant forward conduction mechanism of the NiO/ β -Ga₂O₃ heterojunctions^[48, 50], in which the electrons and holes recombined once they meet at the heterojunction interface by overcoming the barrier of the depletion region. For an asymmetric heterojunction, the interface recombination current can be expressed as the following equation according to Grundmann *et al.*^[59]

$$J_{\text{reco}}(V) = \zeta \frac{qV}{kT} \sqrt{\frac{2kT}{\varepsilon_{\text{s}}} \sigma_{\text{n}} \sigma_{\text{p}} n_{0}} \exp\left(\frac{-qV_{\text{bi}}}{2kT}\right) \exp\left(\frac{qV}{2kT}\right),$$

where k and T are the Boltzmann's constant and the temperature, ε_s and n_0 are the dielectric constant and electron concentration of the β -Ga₂O₃, V_{bi} is the build-in potential in the

Fig. 4. (Color online) The energy band diagrams of the NiO/ β -Ga₂O₃ heterojunctions at thermal equilibrium with different β -Ga₂O₃ substrate orientations. Reproduced from Ref. [47]. Copyright 2023, Elsevier B.V.

NiO/ β -Ga₂O₃ heterojunction, and σ_n and σ_p are the conductivities of β -Ga₂O₃ and NiO, respectively. The coefficient $\zeta = 1$ or $\zeta \rightarrow 0$ represents the fast or low recombination occurring at the heterojunction interface. A near-zero ζ of ~0.008 was obtained for the sputtered NiO/ β -Ga₂O₃ heterojunction at room temperature, indicating a relatively slow recombination. Given $V_{bi} = 1.9$ V from *C*–*V* measurement, Gong *et al.*^[50] also revealed a small ζ which decreased from 5.4 × 10⁻⁴ to 3.4 × 10⁻⁶ when the applied bias varied from $V_{bi}/2$ to V_{bi} . Due to the large VBO (> 2 eV) of the NiO/ β -Ga₂O₃ heterojunction, the holes in NiO can hardly be injected across the barrier at a

Fig. 5. (Color online) Band alignments of the NiO/ β -Ga₂O₃ heterojunctions as a function of post-deposition annealing temperature. Reproduced from Ref. [57]. Copyright 2022, IOP Publishing Ltd.

low forward bias. Instead, the electrons contributed by β -Ga₂O₃ recombine with the holes in the valence band of NiO through interfacial states, which forms the interface recombination current.

When the forward bias increased (>1.6 V), a trap-assisted multistep tunneling model became the dominant conduction mechanism in the NiO/ β -Ga₂O₃ heterojunction^[48]. The model can be described by the following equation^[60, 61]

$$J_{\text{tunnel}}(V) = J_{\text{to}} \exp\left(\alpha \theta^{\frac{1}{2}} V\right),$$
$$J_{\text{to}} = BN_{\text{T}} \exp\left(-\alpha \theta^{\frac{1}{2}} V_{\text{bi}}\right),$$

where $\alpha = (4/3\hbar) \sqrt{m^* \varepsilon_s / N_D}$, N_D is the doping concentration of β -Ga₂O₃, θ is the number of steps of the tunneling, and B is a constant. Fig. 6(a) shows the fitting result of the two models, as mentioned above, with the experimental forward I-V characteristics of the NiO/ β -Ga₂O₃ heterojunction diodes at different temperatures, which exhibits a good agreement. The extracted $\ln(J_{t0})$ as a function of temperature showing good linearity further confirmed the multistep tunneling mechanism, as shown in Fig. 6(b). It is speculated that the grain boundaries in the sputtered NiO films act as trap states^[48] and facilitate electron tunneling^[62]. In addition, according to the deep-level transient spectroscopy (DLTS) measurements carried out at a fixed reverse voltage of -6 V, a pulse filling voltage of +1 V, a pulse filling time of 0.02 ms, and a frequency of 1 Hz^[63], an electron trap corresponded to the forward trap-assisted tunneling was observed in the spectra for the NiO/ β -Ga₂O₃ heterojunction. This electron trap (E_T) exhibited an energy level of $E_{\rm C}$ – 0.67 eV, which is related to Fe sub-

Fig. 6. (Color online) (a) Temperature-dependent forward I-V characteristics and the fitting result with the interface recombination and trapassisted tunneling current model. (b) $\ln(J_{t0})$ versus temperature plot for the NiO/ β -Ga₂O₃ heterojunction. Reproduced from Ref. [48]. Copyright 2021, IEEE.

Fig. 7. (Color online) Energy band diagrams of the NiO/ β -Ga₂O₃ heterojunction p–n diode at a (a) low and (b) high forward bias. Reproduced from Ref. [48]. Copyright 2021, IEEE.

stituting for Ga on a tetrahedral site (Fe_{Gal})^[64]. It has been confirmed that Fe impurities unintentionally doped in the EFG bulk β -Ga₂O₃ during the crystal growth^[65], which might be the possible origination of the E_{T} . Fig. 7 shows the energy band diagrams and carrier dynamics of the NiO/ β -Ga₂O₃ heterojunction.

When the forward bias went beyond 3.5 V, a high-level injection phenomenon and corresponding conductivity modulation effect were observed^[62]. This is because the energy band of NiO is pulled down at a very high forward bias, which leads to a significantly reduced hole barrier height at the Fermi tail; thus, the holes in NiO can travel across the heterojunction interface and diffuse into β -Ga₂O₃. DLTS spectra performed at the same condition in Ref. [63] but with frequency of 1200 Hz exhibited two positive peaks, which are the distinctive contribution by hole traps (H_T). The detection of H_T further confirmed the hole injection from p-NiO to β -Ga₂O₃ in the heterojunction.

3. Device technology based on the NiO/ β -Ga₂O₃ heterojunction

Possessing the advantages of low leakage current, high

thermal stability, and good surge handling capability, bipolar power devices based on pn junctions have always attracted great attention, which promotes the blossoming of the NiO/ β -Ga₂O₃ heterojunction-based power electronics. Very recently, a high BFOM of 13.21 GW/cm² was successfully demonstrated in an 8-kV class sputtered NiO/ β -Ga₂O₃ HJD, representing the highest BFOM value among all the reported β -Ga₂O₃ power devices^[62]. Besides, high-performance JBSs^[32] and JFETs^[33] based on the NiO/ β -Ga₂O₃ heterojunctions have been developed by several groups. Implementation of the NiO/ β -Ga₂O₃ heterojunctions as edge terminations and super-junctions in various types of β -Ga₂O₃ power devices has been promised^[34, 35]. Fig. 8 lists some milestones in developing state-of-the-art NiO/ β -Ga₂O₃ heterojunction based power devices.

3.1. NiO/ β -Ga₂O₃ heterojunction diodes

As previously mentioned, the first 1 kV NiO/ β -Ga₂O₃ HJDs^[27] were fabricated using an 8- μ m thick lightly doped ($n = 4 \times 10^{16} \text{ cm}^{-3}$) β -Ga₂O₃ drift layer grown on a conductive ($n = 2.6 \times 10^{18} \text{ cm}^{-3}$) (001) substrate with a 200-nm thick sputtered p-NiO layer ($p = 1 \times 10^{19} \text{ cm}^{-3}$) on top. The device yielded a BV of 1059 V with an ultra-low leakage current of

2019. 12 <u>The first 1-kV NiO/β-Ga₂O₃</u> <u>heterojunction diode [27]</u> Breakdown voltage: 1059 V BFOM: 0.32 GW/cm²

2020. 09 <u>The first NiO/β-Ga₂O₃</u> <u>heterojunction JBS diode [32]</u> Breakdown voltage: 1715 V BFOM: 0.85 GW/cm²

2021.01

<u>The first NiO/β-Ga₂O₃</u> <u>heterojunction JFET [33]</u> Breakdown voltage: 1190 V BFOM: 0.33 GW/cm²

2021.07

<u>The first β-Ga₂O₃</u> <u>superjunction MOSFET [35]</u>

Breakdown voltage: 1326 V BFOM: 39.1 MW/cm²

Fig. 8. (Color online) The milestones of the state-of-the-art NiO/ β -Ga₂O₃ heterojunction based power devices. Reproduced from Refs. [27, 32, 33, 35]. Copyright 2021 and 2022, IEEE.

below 10⁻⁶ A/cm² before breakdown and a low $R_{on,sp}$ of 3.5 m Ω ·cm², leading to a BFOM of 0.32 GW/cm². The results pave the way for developing high-performance bipolar power devices based on the NiO/ β -Ga₂O₃ heterojunctions.

The trap states located within the sputtered NiO and at the heterojunction interface significantly affect the device performance of a NiO/ β -Ga₂O₃ HJD. A PDA process has been proven as an effective method to improve the crystallinity of the sputtered NiO and reduce the defects density at the hetero-interface^[48, 49, 66]. Moreover, the PDA process could also improve the metal-to-NiO Ohmic contact. Through a precisely controlled PDA process, Hao *et al.*^[66] demonstrated the performance improved NiO/ β -Ga₂O₃ HJDs. After annealing at 350 °C for 3 min in a nitrogen atmosphere, the $R_{on,sp}$ of the HJD was reduced from 5.4 to 4.1 m Ω -cm² while the BV increased from 900 to 1630 V, leading to an improved BFOM from 0.16 to 0.65 GW/cm² as shown in Fig. 9. The ideality factor was extracted to be 3.02 and 1.27 for devices without and

Fig. 9. (Color online) The (a) forward and (b) reverse I-V characteristics of the NiO/ β -Ga₂O₃ heterojunction diodes with and without annealing. Reproduced from Ref. [66]. Copyright 2021, AIP Publishing.

Fig. 10. (Color online) (a) Cross-sectional schematic of the NiO/ β -Ga₂O₃ heterojunction with small-angle bevel FP. The (b) forward and (c) reverse *I–V* characteristics of the devices. Reproduced from Ref. [25]. Copyright 2022, IEEE.

with annealing, and the calculated interface trap density (N_t) were about 1.04×10^{12} and 1.33×10^{11} eV⁻¹, respectively.

Various field plate (FP) structures have been implemented in the NiO/ β -Ga₂O₃ HJDs to manage the electric field. Gong *et al.*^[67] reported a double-layered insulating FP structure. The first layer insulator was a 350-nm-thick SiN_x layer deposited by plasma enhanced chemical vapor deposition (PECVD) at 300 °C and the second layer insulator was a 40-nm-thick Al₂O₃ layer grown by ALD at 300 °C. Subsequently, a 300 nm NiO layer with a length of field plate ($L_{\rm FP}$) of 10 μ m was deposited by RF sputtering. A PDA process was carried out at 300 °C in air for 1 h. The device demonstrated a BV of 1036 V and a $R_{\rm on,sp}$ of 5.4 m Ω ·cm². A small-angle bevel FP structure was proposed for the NiO/ β -Ga₂O₃ HJDs by Wang *et al.*^[25], as shown in Fig. 10. To realize the small-angel bevel FP, a 1- μ m thick SiO₂ was deposited by PECVD and dry etched using a photoresist mask formed by a variable-temperature photoresist reflow technique. The device featured a BV of up to 2410 V with a low $R_{on,sp}$ of 1.12 m Ω ·cm², yielding a high BFOM of 5.18 GW/cm². The bevel angle of the FP, the dielectric layer thickness, and the dimension of the FP are the critical parameters. With well-optimized parameters, this FP structure can offer great potential for fabricating high-voltage β -Ga₂O₃ power devices.

Another approach to improve the performance of the NiO/ β -Ga₂O₃ HJDs is using a double-layered NiO film^[68]. As shown in Fig. 11(a), the sputtered NiO film was composed of a 350-nm-thick lower-side lightly doped layer ($p = 5.1 \times 10^{17}$ cm⁻³) and a 100-nm-thick upper-side heavily doped layer ($p = 3.6 \times 10^{19}$ cm⁻³). Compared with the single-layered

Fig. 11. (Color online) (a) Device schematic and (b) the reverse *I–V* characteristics of the double-layered NiO/ β -Ga₂O₃ heterojunction diode. Reproduced from Ref. [68]. Copyright 2020, AIP Publishing.

device (S2), the double-layered device (S1) demonstrated an enhanced BV from 0.94 to 1.86 kV, as shown in Fig. 11(b). Liao et al.^[49] thoroughly optimized the double-layered NiO/ β -Ga₂O₃ HJDs by performing both experimental study and technology computer-aided design (TCAD) simulation. It was revealed that the bottom lightly doped NiO layer could smoothen the electric field, while the upper heavily doped NiO layer can reduce the $R_{on,sp}$ by lowering the metal-to-NiO contact resistance. In addition, verified by the TCAD simulation, the electric field peak of the double-layered NiO/β-Ga₂O₃ HJDs located at the edge of the p⁺-NiO layer rather than the p--NiO layer, and enlarging the dimension of the bottom p--NiO layer can effectively suppress the electric field peak, as shown in Fig. 12. The influence of the bottom NiO layer thickness was studied by Li et al.[69]. The device schematic is shown in Fig. 13(a). The upper NiO layer (p = $2.6 \times 10^{19} \text{ cm}^{-3}$) was fixed at 10 nm, while the thickness of the bottom NiO layer ($p = 3 \times 10^{18} \text{ cm}^{-3}$) ranged from 10 nm to 80 nm. The BV showed a negative correlation with the thickness of the bottom NiO layer, as shown in Fig. 13(b).

Zhou *et al.*^[70] demonstrated a novel beveled-mesa NiO/ β -Ga₂O₃ HJD, as shown in Fig. 14. By precisely adjusting the gap between the mask and β -Ga₂O₃ wafer as well as the declination angle of the NiO target with respect to the substrate surface normal, the double-layered NiO film with a small beveled angle was formed. The fabricated large-area (1 mm²) HJDs performed a low $R_{on,sp}$ of 2.26 m Ω ·cm² and a high BV of 2.04 kV, leading to a BFOM of 1.84 GW/cm². A

Fig. 12. (Color online) (a) Simulated two-dimensional electric field distributions in the vicinity of the NiO and anode electrode at a reverse bias of 1000 V for the double-layered NiO/ β -Ga₂O₃ HJD and (b) line profile of simulated electric field along the surface of the β -Ga₂O₃ drift layer for the HJD with varied *W*' (*W*' = $R_{p-NiO} - R_{p+NiO}$). Reproduced from Ref. [49]. Copyright 2022, IEEE.

remarkable BV of 8.32 kV was achieved in the NiO/ β -Ga₂O₃ HJD^[62] by employing the double-layered NiO structure and advanced edge terminations of an FP and an Mg-implanted guard ring. Ion implantation in the device periphery to form a high-resistivity region can effectively relieve the electric field crowing effect and improve the breakdown voltage in power devices. Fig. 15 shows the schematic and *I–V* characteristics of the device. A low $R_{on,sp}$ of 5.24 m Ω ·cm² was obtained for the 8.32 kV HJD, and the BFOM of 13.21 GW/cm² was the highest value among all the reported β -Ga₂O₃ power devices so far.

3.2. NiO/ β -Ga₂O₃ heterojunction JBS

Schottky barrier diodes (SBDs) possess properties of low turn-on voltage and fast switching speed. Meanwhile, p–n diodes have the advantages of low leakage current and good surge handling capability. The JBS devices can combine the advantages of SBDs and p–n diodes.

The first NiO/ β -Ga₂O₃ heterojunction JBS was demonstrated by Lv *et al.*^[32]. Fig. 16 shows the schematic and the *I*-*V* characteristics of the JBS device. The NiO layer ($p = 1 \times 10^{18}$ cm⁻³) with a thickness of 60 nm was formed by thermally oxidizing Ni metal. The fabricated JBS showed a low V_{on} of ~1 V, slightly higher than the reference SBD (~0.7 V). The BV of the JBS was as high as 1715 V, far superior to that of the reference SBD (655 V). However, these JBSs suffered from a huge reverse leakage current under a high electric field, and the leakage mechanism was determined to be a Pool-Frenkel (PF) emission, which refers to the electric-field-

Fig. 13. (Color online) (a) Device schematic and (b) the reverse I-V characteristics of the double-layered NiO/ β -Ga₂O₃ heterojunction diode with varied thickness of the bottom NiO layer. Reproduced from Ref. [69]. Copyright 2022, AIP Publishing.

Fig. 14. (Color online) (a) Cross-sectional schematic of the NiO/ β -Ga₂O₃ heterojunction diode with bevel mesa. The (b) forward and (c) reverse *I*–*V* characteristics of the devices. Reproduced from Ref. [70]. Copyright 2021, AIP Publishing.

Fig. 15. (Color online) (a) Cross-sectional schematic of the NiO/ β -Ga₂O₃ heterojunction diode with double NiO layer and edge termination. The (b) forward and (c) reverse *I*-*V* characteristics of the devices. Reproduced from Ref. [62].

Fig. 16. (Color online) (a) Cross-sectional schematic of the NiO/ β -Ga₂O₃ JBS diode. The (b) forward and (c) reverse *I*–*V* characteristics of the devices. Reproduced from Ref. [32]. Copyright 2021, IEEE.

X Lu et al.: Recent advances in NiO/Ga₂O₃ heterojunctions for power electronics

Fig. 17. (Color online) (a) Cross-sectional schematic of the NiO $/\beta$ -Ga₂O₃ JBS diode with fin structure. The (b) forward and (c) reverse *I–V* characteristics of the devices with different fin widths. Reproduced from Ref. [73]. Copyright 2021, AIP Publishing.

enhanced thermal excitation of electrons from a trapped state into a continuum of electronic states^[71]. According to the Arrhenius plots of the reverse leakage current vs. 1000/T measured at various reverse biases, the emission barrier height was determined to be $E_{\rm C}$ – 0.72 eV below the conduction band, which is consistent with the energy level of gallium vacancies $(V_{Ga})^{[72]}$. It indicated that in such a JBS structure, the NiO/ β -Ga₂O₃ heterojunction failed to suppress the reverse leakage current through the Schottky contact region. To address this issue, the NiO/ β -Ga₂O₃ heterojunction JBSs with etched fin structures were developed^[73]. The fin structures on the β -Ga₂O₃ drift layer were firstly formed by reactive ion etching (RIE), and then the trenches between the fins were filled with sputtered p-NiO, as schematically shown in Fig. 17(a). With the fin structures, the pn heterojunction depleted laterally at the reverse bias, which lowered the density of free carriers left in the β -Ga₂O₃ channel; thus, the fin structures would help to suppress the leakage current through the Schottky contact region. Three JBSs with different fin widths were fabricated. The V_{on} and $R_{on,sp}$ of the JBSs were measured to be 1.7 V/2.45 mΩ·cm², 1.5 V/1.94 mΩ·cm², and 1.45 V/1.91 m Ω ·cm², for the fin width of 1.5, 3, and 5 μ m, respectively. Since the forward I-V characteristics of a JBS should be mainly determined by its Schottky contact region, the device had a greater proportion of Schottky contact area showed a closer value of V_{on} and $R_{on,sp}$ to an SBD. However, the measured BV of the JBSs did not show a strong dependence on the fin width. Though the reverse leakage current was partially suppressed by using the fin structures, the dry

etching process produced high-density deep-level traps at the β -Ga₂O₃ surface, which might introduce excess leakage current^[74, 75]. A post-etching treatment process would be helpful to remove the defects from the etched β -Ga₂O₃ surface, for example, surface treatment using a hot tetramethylammonium hydroxide (TMAH) solution^[76]. At present, high reverse leakage current is still the remaining issue that hinders the development of the NiO/ β -Ga₂O₃ heterojunction JBSs.

3.3. NiO/ β -Ga₂O₃ heterojunction JFET

The development of lateral β -Ga₂O₃ field-effect transistors (FETs) has achieved remarkable progress^[77-80]. However, the reported device performance is still far from the projected material limitation of β -Ga₂O₃. The channel doping level and thickness must be carefully designed to ensure an effective channel pinch-off in a lateral FET and obtain a good balance between the $R_{on,sp}$ and BV. The β -Ga₂O₃ JFETs based on the NiO/ β -Ga₂O₃ heterojunctions have been proposed by Wang et al. for the first time^[33], as shown in Fig. 18(a). The employed p-NiO gate provided a vertical depletion to the β -Ga₂O₃ channel and facilitated the channel pinch-off. Therefore, a relatively thicker channel and higher channel doping concentration could be used in the device to minimize the $R_{\text{on.sp}}$ without sacrificing the BV. On the other hand, the lateral depletion of the heterojunction in the channel could help smooth the electric field at the drain-side-gate-edge and boost the BV of the JFETs. The fabricated devices exhibited a low $R_{on,sp}$ of 3.19 m Ω ·cm² and a high BV of 1115 V, yielding a BFOM of 0.39 GW/cm². Using a gate-recessed architecture, a

(a) FLR SBD-FLR SBD NiO Ni/Au NiO Si-doped β -Ga₂O₃ (001) 7.7 µm n=1.5×10¹⁶ cm⁻³ n⁺ Sn-doped β -Ga₂O₃ (001) substrate n=1.0×10¹⁹ cm⁻³ (b)₋₁ Fluoriner Anode 0 1 Position (µm) 2 NiO 3 Electric Eield Ga₂O₃ 4 (MV/cm) 5.0 5 4.0 3.0 6 SBD-FLR 2.0 7 1.0 Cathode 0.0 8 10 30 20 40 50 60 0 Position (µm)

Fig. 18. (Color online) Cross-sectional schematic of (a) the NiO/ β -Ga₂O₃ JFET and (b) the NiO/ β -Ga₂O₃ JFET with recessed gate. Reproduced from Refs. [33, 81]. Copyright 2021 and 2022, IEEE.

normally-off operation has been realized in the NiO/ β -Ga₂O₃ heterojunction JFETs^[81]. As schematically shown in Fig. 18(b), the 200 nm channel was recessed down to 80 nm in the gate region by an inductively coupled plasma (ICP) etching process, and a 50 nm p-NiO gate was sputtered. A positive threshold voltage ($V_{\rm th}$) of +0.9 V was achieved.

4. NiO/ β -Ga₂O₃ heterojunction-based edge terminations and super-junctions

Various edge termination techniques, such as FP^[19, 82], ion-implanted GR^[20, 83, 84], and thermally oxidized terminations^[85], have been developed to relieve the electric field crowding and enhance the BV of the β -Ga₂O₃ power device.

The field limiting ring (FLR) using p–n junctions is an effective structure to suppress the electric field peak at the device edge, which is commonly used in SiC power devices^[86]. An improved BV has been reported in β -Ga₂O₃ SBDs by adopting a NiO/ β -Ga₂O₃ heterojunction-based FLR^[71], as shown in Fig. 19(a). Compared to the device without the FLR, the average BV was increased from 0.43 to 0.75 kV. A TCAD simulation was carried out to investigate the influence of the NiO/ β -Ga₂O₃ heterojunction FLR on the electric field distribution of the devices under a reverse bias. As shown in Fig. 19(b), the electric field spread out into the FLR structures, and the crowding of the electric field at the device edge was effectively mitigated.

The p-NiO guard ring has also been employed in β -Ga₂O₃ SBDs^[34]. As shown in Fig. 20, a 300-nm trench was etched in the β -Ga₂O₃ drift layer and subsequently filled with sputtered p-NiO ($p = 1 \times 10^{18}$ cm⁻³) to construct the guard ring.

Fig. 19. (Color online) (a) Schematic of β -Ga₂O₃ SBD with FLR. (b) Twodimensional electric field distribution at a reverse bias of 1.89 kV for β -Ga₂O₃ SBD with FLR. Reproduced from Ref. [71]. Copyright 2021, AIP Publishing.

The SBDs showed an improved BV of 1130 V by introducing the p-NiO guard ring compared to a BV of 300 V for SBDs without the guard ring. By further implementation of an FP structure, the BV was boosted to 1860 V.

Super-junction (SJ) is a promising technique to manage the electric field in power devices^[87–90], which has been successfully commercialized in Si devices^[91, 92] and also introduced in GaN and SiC devices^[93–95]. With an alternative arrangement of p-type and n-type stripes, the SJ structure can uniform the electric field distribution in the drift layer, relying on the charge balance principle^[96]. Wang *et al*.^[35] demonstrated a novel super-junction β -Ga₂O₃ MOSFET based on the NiO/ β -Ga₂O₃ drift layer were formed using ICP etching and then filled with sputtered NiO ($p = 1 \times 10^{18}$ cm⁻³). Compared with a co-fabricated conventional MOSFET, the SJ MOSFETs exhibited an improved BFOM by 4.86 times.

5. Summary and prospects

Still at the very early stage of development, the NiO/ β -Ga₂O₃ heterojunction has shown great potential for application in β -Ga₂O₃ power electronics. In this review, we summarized the state-of-the-art device technology and development of NiO/ β -Ga₂O₃ heterojunction power devices. Despite the encouraging progress, some crucial issues still exist for practical application.

First, developing high-quality β -Ga₂O₃ material, including both the substrate and the epi film, is the cornerstone for future improvement of the power devices. The unintentional

Fig. 20. (Color online) (a) Schematic of β -Ga₂O₃ SBD with NiO guard ring and FP termination. (b) Reverse *I–V* characteristics of β -Ga₂O₃ SBD without and with termination structure. Reproduced from Ref. [34]. Copyright 2022, AIP Publishing.

impurities, defects, and dislocations within the β -Ga₂O₃ crystal can significantly affect the device performances regarding leakage current, electrical conductivity, device reliability, etc.

The device structure optimization is essential to further enhance the device voltage blocking capability. As mentioned, the double NiO layers, FP structures, and ionimplanted GRs are all feasible solutions. Still, further improvements in the details of these structures remain. For example, the dielectric layer's materials, thickness, and deposition process are critical factors for an FP structure. As for the ionimplanted GRs, more investigation is needed on different implanted ions, the profiles of the implanted region, and the post-implantation annealing conditions.

Trap states at the NiO/ β -Ga₂O₃ heterojunction interface can cause large hysteresis and excess reverse leakage current. As mentioned, a PDA process is an effective method to improve the heterojunction interface quality. However, the forward conduction can be degraded by annealing since the hole concentration of the NiO layer decreases. Surface treatment using solutions or a plasma process is also a practical method to remove the defects at the β -Ga₂O₃ surface and realize a high-quality hetero-interface.

Device reliability is very important for the commercial application of the NiO/ β -Ga₂O₃ heterojunction power

Fig. 21. (Color online) (a) 3-D schematic of the fabricated β -Ga₂O₃ SJequivalent MOSFET. (b) Measured I_D - V_D curves of the devices. (c) Reverse *I*-V characteristics of the devices. Reproduced from Ref. [35]. Copyright 2022, IEEE.

devices, especially at high temperatures. The sputtered NiO layer usually faces a thermal stability issue, whose hole concentration usually reduces at high temperatures. The reliability verifications for the NiO/ β -Ga₂O₃ heterojunction devices are still lacking and awaiting future exploration.

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515012163.

References

 She X, Huang A Q, Lucía Ó, et al. Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron, 2017, 64, 8193

Journal of Semiconductors doi: 10.1088/1674-4926/44/6/061802 13

- [2] Jones E A, Wang F F, Costinett D. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J Emerg Sel Top Power Electron, 2016, 4, 707
- [3] Saikumar A K, Nehate S D, Sundaram K B. Review—RF sputtered films of Ga₂O₃. ECS J Solid State Sci Technol, 2019, 8, Q3064
- [4] Pearton S J, Yang J C, Cary P H, et al. A review of Ga₂O₃ materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301
- [5] Zhou H, Zhang J C, Zhang C F, et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 2019, 40, 011803
- [6] Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga₂O₃ polymorphs. J Phys: Condens Matter, 2007, 19, 346211
- $\label{eq:starsest} \begin{array}{l} \mbox{[7]} \mbox{Villora E G, Shimamura K, Yoshikawa Y, et al. Large-size $$\beta$-Ga_2O_3$ single crystals and wafers. J Cryst Growth, 2004, 270, 420 \end{array}$
- [8] Kuramata A, Koshi K, Watanabe S, et al. High-quality β -Ga₂O₃ single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 2016, 55, 1202A2
- [10] Zhang Y W, Alema F, Mauze A, et al. MOCVD grown epitaxial β -Ga₂O₃ thin film with an electron mobility of 176 cm²/V s at room temperature. APL Mater, 2018, 7, 022506
- [11] Chen Y P, Xia X C, Liang H W, et al. Growth pressure controlled nucleation epitaxy of pure phase ε - and β -Ga₂O₃ films on Al₂O₃ via metal–organic chemical vapor deposition. Cryst Growth Des, 2018, 18, 1147
- [12] Kukushkin S A, Nikolaev V I, Osipov A V, et al. Epitaxial gallium oxide on a SiC/Si substrate. Phys Solid State, 2016, 58, 1876
- [13] Wei H L, Chen Z W, Wu Z P, et al. Epitaxial growth and characterization of CuGa₂O₄ films by laser molecular beam epitaxy. AIP Adv, 2017, 7, 115216
- [14] Sasaki K, Higashiwaki M, Kuramata A, et al. MBE grown Ga₂O₃ and its power device applications. J Cryst Growth, 2013, 378, 591
- [15] Joishi C, Rafique S, Xia Z B, et al. Low-pressure CVD-grown β-Ga₂O₃ bevel-field-plated Schottky barrier diodes. Appl Phys Express, 2018, 11, 031101
- [16] Baldini M, Albrecht M, Fiedler A, et al. Si- and Sn-doped homoepitaxial β -Ga₂O₃ layers grown by MOVPE on (010)-oriented substrates. ECS J Solid State Sci Technol, 2016, 6, Q3040
- [17] Varley J B, Janotti A, Franchini C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 2012, 85, 081109
- [18] Lyons J L. A survey of acceptor dopants for β. Semicond Sci Technol, 2018, 33, 05LT02
- [19] Yang J C, Xian M H, Carey P, et al. Vertical geometry 33.2 A, 4.8 MW cm² Ga_2O_3 field-plated Schottky rectifier arrays. Appl Phys Lett, 2019, 114, 232106
- [20] Zhou H, Yan Q L, Zhang J C, et al. High-performance vertical β -Ga₂O₃ Schottky barrier diode with implanted edge termination. IEEE Electron Device Lett, 2019, 40, 1788
- [21] Li W S, Nomoto K, Hu Z Y, et al. Field-plated Ga_2O_3 trench Schottky barrier diodes with a $BV_2/R_{on, sp}$ of up to 0.95 GW/cm². IEEE Electron Device Lett, 2020, 41, 107
- [22] Jian Z A, Mohanty S, Ahmadi E. Switching performance analysis of 3.5 kV Ga₂O₃ power FinFETs. IEEE Trans Electron Devices, 2021, 68, 672
- [23] Nakagomi S, Hiratsuka K, Kakuda Y, et al. Beta-gallium oxide/SiC heterojunction diodes with high rectification ratios. ECS J Solid State Sci Technol, 2016, 6, Q3030
- [24] Zhang Y C, Li Y F, Wang Z Z, et al. Investigation of β -Ga₂O₃ films and β -Ga₂O₃/GaN heterostructures grown by metal organic chemical vapor deposition. Sci China Phys Mech Astron, 2020, 63, 117311

- [25] Wang Y G, Gong H H, Lv Y J, et al. 2.41 kV vertical P-NiO/n-Ga₂O₃ heterojunction diodes with a record Baliga's figure-of-merit of 5.18 GW/cm². IEEE Trans Power Electron, 2022, 37, 3743
- [26] Kokubun Y, Kubo S, Nakagomi S. All-oxide p–n heterojunction diodes comprising p-type NiO and n-type β-Ga₂O₃. Appl Phys Express, 2016, 9, 091101
- [27] Lu X, Zhou X D, Jiang H X, et al. 1-kV sputtered p-NiO/n-Ga₂O₃ heterojunction diodes with an ultra-low leakage current below 1μ A/cm². IEEE Electron Device Lett, 2020, 41, 449
- [28] Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu₂O/n-Ga₂O₃ diode with high breakdown voltage. Appl Phys Lett, 2017, 111, 222104
- [29] Budde M, Splith D, Mazzolini P, et al. SnO/β-Ga₂O₃ vertical pn heterojunction diodes. Appl Phys Lett, 2020, 117, 252106
- [30] Gallagher J C, Koehler A D, Tadjer M J, et al. Demonstration of Cul as a P–N heterojunction to β. Appl Phys Express, 2019, 12, 104005
- [31] Chen H L, Lu Y M, Hwang W S. Characterization of sputtered NiO thin films. Surf Coat Technol, 2005, 198, 138
- [32] Lv Y J, Wang Y G, Fu X C, et al. Demonstration of β -Ga₂O₃ junction barrier Schottky diodes with a Baliga's figure of merit of 0.85 GW/cm² or a 5A/700 V handling capabilities. IEEE Trans Power Electron, 2021, 36, 6179
- [33] Wang C L, Gong H H, Lei W N, et al. Demonstration of the p-Ni-O_x/n-Ga₂O₃ heterojunction gate FETs and diodes with BV²/R_{on, sp} figures of merit of 0.39 GW/cm² and 1.38 GW/cm². IEEE Electron Device Lett, 2021, 42, 485
- [34] Yan Q L, Gong H H, Zhou H, et al. Low density of interface trap states and temperature dependence study of Ga₂O₃ Schottky barrier diode with p-NiO_x termination. Appl Phys Lett, 2022, 120, 092106
- [35] Wang Y B, Gong H H, Jia X L, et al. Demonstration of β-Ga₂O₃ superjunction-equivalent MOSFETs. IEEE Trans Electron Devices, 2022, 69, 2203
- [36] Wang Y, Qin Q Z. A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries. J Electrochem Soc, 2002, 149, A873
- [37] Jlassi M, Sta I, Hajji M, et al. Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating. Mater Sci Semicond Process, 2014, 21, 7
- [38] Park J H, Seo J, Park S, et al. Efficient CH₃NH₃Pbl₃ perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater, 2015, 27, 4013
- [39] Hotový I, Búc D, Haščík Š, et al. Characterization of NiO thin films deposited by reactive sputtering. Vacuum, 1998, 50, 41
- [40] Budde M, Remmele T, Tschammer C, et al. Plasma-assisted molecular beam epitaxy of NiO on GaN(00.1). J Appl Phys, 2020, 127, 015306
- [41] Tadjer M J, Luna L E, Cleveland E, et al. Fabrication and characterization of β -Ga₂O₃ heterojunction rectifiers. ECS Trans, 2018, 85, 21
- [42] Hajakbari F. Characterization of nanocrystalline nickel oxide thin films prepared at different thermal oxidation temperatures. J Nanostruct Chem, 2020, 10, 97
- [43] Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, et al. Tunable electrical and optical properties of nickel oxide (NiO_x) thin films for fully transparent NiO_x-Ga₂O₃ p-n junction diodes. ACS Appl Mater Interfaces, 2018, 10, 38159
- [44] Schlupp P, Splith D, von Wenckstern H, et al. Electrical properties of vertical p-NiO/n-Ga₂O₃ and p-ZnCo₂O₄/n-Ga₂O₃ pn-heterodiodes. Phys Status Solidi A, 2019, 216, 1800729

X Lu et al.: Recent advances in NiO/Ga₂O₃ heterojunctions for power electronics

14 Journal of Semiconductors doi: 10.1088/1674-4926/44/6/061802

Mater Interfaces, 2019, 11, 35095

- [47] Deng Y X, Yang Z Q, Xu T L, et al. Band alignment and electrical properties of NiO/ β -Ga₂O₃ heterojunctions with different β -Ga₂O₃ orientations. Appl Surf Sci, 2023, 622, 156917
- [48] Luo H X, Zhou X D, Chen Z M, et al. Fabrication and characterization of high-voltage NiO/ β -Ga₂O₃ heterojunction power diodes. IEEE Trans Electron Devices, 2021, 68, 3991
- [49] Liao C, Lu X, Xu T L, et al. Optimization of NiO/β-Ga₂O₃ heterojunction diodes for high-power application. IEEE Trans Electron Devices, 2022, 69, 5722
- [50] Gong H H, Chen X H, Xu Y, et al. Band alignment and interface recombination in NiO/ β -Ga₂O₃ type-II p-n heterojunctions. IEEE Trans Electron Devices, 2020, 67, 3341
- [51] Guo Z, Verma A, Wu X F, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl Phys Lett, 2015, 106, 111909
- [52] Wong M H, Sasaki K, Kuramata A, et al. Electron channel mobility in silicon-doped Ga₂O₃ MOSFETs with a resistive buffer layer. Jpn J Appl Phys, 2016, 55, 1202B9
- [53] Jang S, Jung S, Beers K, et al. A comparative study of wet etching and contacts on ($\overline{2}01$) and (010) oriented β -Ga₂O₃. J Alloys Compd, 2018, 731, 118
- [54] Zhang K, Xu Z W, Zhao J L, et al. Anisotropies of angle-resolved polarized Raman response identifying in low miller index β -Ga₂O₃ single crystal. Appl Surf Sci, 2022, 581, 152426
- [55] Yatskiv R, Tiagulskyi S, Grym J. Influence of crystallographic orientation on Schottky barrier formation in gallium oxide. J Electron Mater, 2020, 49, 5133
- [56] Fu H Q, Chen H, Huang X Q, et al. A comparative study on the electrical properties of vertical ($\overline{2}01$) and (010) β -Ga₂O₃ Schottky barrier diodes on EFG single-crystal substrates. IEEE Trans Electron Devices, 2018, 65, 3507
- [57] Xia X Y, Li J S, Chiang C C, et al. Annealing temperature dependence of band alignment of NiO/β-Ga₂O₃. J Phys D: Appl Phys, 2022, 55, 385105
- [58] Wang Z P, Gong H H, Meng C X, et al. Majority and minority carrier traps in NiO/β-Ga₂O₃ p-n heterojunction diode. IEEE Trans Electron Devices, 2022, 69, 981
- [59] Grundmann M, Karsthof R, von Wenckstern H. Interface recombination current in type II heterostructure bipolar diodes. ACS Appl Mater Interfaces, 2014, 6, 14785
- [60] Riben A R, Feucht D L. Electrical transport in nGe-pGaAs heterojunctions. Int J Electron, 1966, 20, 583
- [61] Riben A R, Feucht D L. nGe–pGaAs heterojunctions. Solid State Electron, 1966, 9, 1055
- [62] Zhang J C, Dong P F, Dang K, et al. Ultra-wide bandgap semiconductor Ga₂O₃ power diodes. Nat Commun, 2022, 13, 3900
- [63] Wang Z P, Gong H H, Yu X X, et al. Trap-mediated bipolar charge transport in NiO/Ga₂O₃ p⁺-n heterojunction power diodes. Sci China Mater, 2022, 66, 1157
- [64] Zimmermann C, Frodason Y K, Barnard A W, et al. Ti- and Fe-related charge transition levels in β -Ga₂O₃. Appl Phys Lett, 2020, 116, 072101
- [65] Ingebrigtsen M E, Varley J B, Kuznetsov A Y, et al. Iron and intrinsic deep level states in Ga₂O₃. Appl Phys Lett, 2018, 112, 042104
- [66] Hao W B, He Q M, Zhou K, et al. Low defect density and small I V curve hysteresis in NiO/ β -Ga₂O₃ pn diode with a high PFOM of 0.65 GW/cm². Appl Phys Lett, 2021, 118, 043501
- [67] Gong H H, Yu X X, Xu Y, et al. Vertical field-plated NiO/Ga₂O₃ heterojunction power diodes. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2021, 1
- [68] Gong H H, Chen X H, Xu Y, et al. A 1.86-kV double-layered NiO/β-Ga₂O₃ vertical p-n heterojunction diode. Appl Phys Lett, 2020, 117, 022104
- [69] Li J S, Chiang C C, Xia X Y, et al. Demonstration of 4.7 kV breakdown voltage in NiO/β-Ga₂O₃ vertical rectifiers. Appl Phys Lett,

2022, 121, 042105

- [70] Zhou F, Gong H H, Wang Z P, et al. Over 1.8 GW/cm² beveledmesa NiO/β-Ga₂O₃ heterojunction diode with 800 V/10 A nanosecond switching capability. Appl Phys Lett, 2021, 119, 262103
- [71] Gong H H, Yu X X, Xu Y, et al. β -Ga₂O₃ vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl Phys Lett, 2021, 118, 202102
- [72] De Santi C, Fregolent M, Buffolo M, et al. Carrier capture kinetics, deep levels, and isolation properties of β -Ga₂O₃ Schottky-barrier diodes damaged by nitrogen implantation. Appl Phys Lett, 2020, 117, 262108
- [73] Yan Q L, Gong H H, Zhang J C, et al. β-Ga₂O₃ hetero-junction barrier Schottky diode with reverse leakage current modulation and BV²/R_{on,sp} value of 0.93 GW/cm². Appl Phys Lett, 2021, 118, 122102
- [74] Polyakov A Y, Lee I H, Smirnov N B, et al. Defects at the surface of β -Ga₂O₃ produced by Ar plasma exposure. APL Mater, 2019, 7, 061102
- [75] Alfieri G, Mihaila A, Godignon P, et al. Deep level study of chlorine-based dry etched β-Ga₂O₃. J Appl Phys, 2021, 130, 025701
- $\begin{array}{ll} \mbox{[76]} & \mbox{Lu X, Xu T L, Deng Y X, et al. Performance-enhanced NiO/\beta-Ga_2O_3 } \\ & \mbox{heterojunction diodes fabricated on an etched β-Ga_2O_3 surface.} \\ & \mbox{Appl Surf Sci, 2022, 597, 153587} \end{array} \end{array}$
- [77] Lv Y J, Zhou X Y, Long S B, et al. Lateral source field-plated β -Ga₂O₃ MOSFET with recorded breakdown voltage of 2360 V and low specific on-resistance of 560 m Ω cm². Semicond Sci Technol, 2019, 34, 11LT02
- [78] Mun J K, Cho K, Chang W, et al. Editors' choice—2.32 kV breakdown voltage lateral β -Ga₂O₃ MOSFETs with source-connected field plate. ECS J Solid State Sci Technol, 2019, 8, Q3079
- [79] Tetzner K, Bahat Treidel E, Hilt O, et al. Lateral 1.8 kV β -Ga₂O₃ MOSFET with 155 MW/cm² power figure of merit. IEEE Electron Device Lett, 2019, 40, 1503
- [80] Lv Y J, Liu H Y, Zhou X Y, et al. Lateral β-Ga₂O₃ MOSFETs with high power figure of merit of 277 MW/cm². IEEE Electron Device Lett, 2020, 41, 537
- [81] Zhou X Z, Liu Q, Hao W B, et al. Normally-off β -Ga₂O₃ power heterojunction field-effect-transistor realized by p-NiO and recessed-gate. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 101
- [82] Konishi K, Goto K, Murakami H, et al. 1-kV vertical Ga₂O₃ fieldplated Schottky barrier diodes. Appl Phys Lett, 2017, 110, 103506
- [83] Zhang Y N, Zhang J C, Feng Z Q, et al. Impact of implanted edge termination on vertical β -Ga₂O₃ Schottky barrier diodes under OFF-state stressing. IEEE Trans Electron Devices, 2020, 67, 3948
- [84] Gao Y Y, Li A, Feng Q, et al. High-voltage β -Ga₂O₃ Schottky diode with argon-implanted edge termination. Nanoscale Res Lett, 2019, 14, 8
- [85] Wang Y G, Lv Y J, Long S B, et al. High-voltage (-201) β -Ga₂O₃ vertical Schottky barrier diode with thermally-oxidized termination. IEEE Electron Device Lett, 2020, 41, 131
- [86] Hirao T, Onose H, Kan Y S, et al. Edge termination with enhanced field-limiting rings insensitive to surface charge for high-voltage SiC power devices. IEEE Trans Electron Devices, 2020, 67, 2850
- [87] Fujihira T. Theory of semiconductor superjunction devices. Jpn J Appl Phys, 1997, 36, 6254
- [88] Deboy G, Marz N, Stengl J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. International Electron Devices Meeting, 1998, 683
- [89] Lorenz L, Deboy G, Knapp A, et al. COOLMOS/sup TM/-a new milestone in high voltage power MOS. 11th International Symposium on Power Semiconductor Devices and ICs, 1999, 3
- [90] Udrea F, Deboy G, Fujihira T. Superjunction power devices, history, development, and future prospects. IEEE Trans Electron

X Lu et al.: Recent advances in NiO/Ga₂O₃ heterojunctions for power electronics

Journal of Semiconductors doi: 10.1088/1674-4926/44/6/061802 15

Devices, 2017, 64, 713

- [91] Nassif-Khalil S G, Salama C A T. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50, 1385
- [92] Duan B X, Cao Z, Yuan X, et al. New superjunction LDMOS breaking silicon limit by electric field modulation of buffered step doping. IEEE Electron Device Lett, 2015, 36, 47
- [93] Xiao M, Zhang R Z, Dong D, et al. Design and simulation of GaN superjunction transistors with 2-DEG channels and fin channels. IEEE J Emerg Sel Top Power Electron, 2019, 7, 1475
- [94] Zhong X Q, Wang B Z, Wang J, et al. Experimental demonstration and analysis of a 1.35-kV 0.92-m Ω·cm² SiC superjunction Schottky diode. IEEE Trans Electron Devices, 2018, 65, 1458
- [95] Nakajima A, Sumida Y, Dhyani M H, et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett, 2011, 32, 542
- [96] Wang H, Napoli E, Udrea F. Breakdown voltage for superjunction power devices with charge imbalance: An analytical model valid for both punch through and non punch through devices. IEEE Trans Electron Devices, 2009, 56, 3175

sity of Science and Technology, Hong Kong. He is currently an Associate Professor with the State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.

Xing Lu received the B.S. degree from Fudan University, Shanghai, China, and the

Ph.D. degree from The Hong Kong Univer-

Gang Wang received the B.S. degree from Jilin University, Changchun, China, and the Ph.D. degree from Nagoya Institute of Technology, Japan. He is currently a Professor with the State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.