• Acta Optica Sinica
  • Vol. 41, Issue 5, 0516004 (2021)
Minmin Rong1, Yijun Zhang1、*, Shiman Li1, Gangcheng Jiao2, Weixin Liu3, Ziheng Wang1, Zhaoxin Shu1, and Yunsheng Qian1
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • 2Science and Technology on Low-Light-Level Night Vision Laboratory, Xi′an, Shaanxi 710065, China
  • 3No. 808 Institute, Shanghai Academy of Spacecraft Technology, Shanghai 201109, China
  • show less
    DOI: 10.3788/AOS202141.0516004 Cite this Article Set citation alerts
    Minmin Rong, Yijun Zhang, Shiman Li, Gangcheng Jiao, Weixin Liu, Ziheng Wang, Zhaoxin Shu, Yunsheng Qian. InGaAs Surface Cleaning Based on Scanning Focused XPS Technique[J]. Acta Optica Sinica, 2021, 41(5): 0516004 Copy Citation Text show less
    References

    [1] Bernal-Correa R, Morales-Acevedo A, Pulzara Mora Á et al. Design of AlxGa1-xAs/GaAs/InyGa1-yAs triple junction solar cells with anti-reflective coating[J]. Materials Science in Semiconductor Processing, 37, 57-61(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=b9d92455b86e7f59634d433402d1fb1c

    [2] Li G J, Lu J, Wang C M et al. Simulation of laser irradiation of one-dimensional In0.3Ga0.7As solar cells[J]. Laser & Optoelectronics Progress, 55, 101601(2018).

    [3] Tang Y, Cao C F, Zhao X Y et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J]. Laser & Optoelectronics Progress, 56, 131402(2019).

    [4] Li X, Gong H M, Tang H J et al. 1024×1 elements near-infrared InGaAs linear focal plane arrays assembly[J]. Acta Optica Sinica, 31, s100305(2011).

    [5] Ding Y X, Li Y F, Liu H B et al. Photon counting experiment based on InGaAs detector in daylight[J]. Chinese Journal of Lasers, 45, 1104003(2018).

    [6] Zhang Y J, Niu J, Zhao J et al. Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes[J]. Journal of Applied Physics, 108, 093108(2010).

    [7] Jin M C. Study of preparation and performance for near-infrared InGaAs photocathode[D]. Nanjing: Nanjing University of Science and Technology, 6-11(2016).

    [8] Wang W P, Ma J Y. Material and fabrication process of near infrared response III-V compound semiconductor photocathode[J]. Optoelectronic Technology, 33, 194-197, 207(2013).

    [9] Jin M C, Zhang Y J, Chen X L et al. Effect of surface cleaning on spectral response for InGaAs photocathodes[J]. Applied Optics, 54, 10630-10635(2015). http://europepmc.org/abstract/MED/26837029

    [10] Feng C, Zhang Y J, Liu J et al. Optimized chemical cleaning procedure for enhancing photoemission from GaAs photocathode[J]. Materials Science in Semiconductor Processing, 91, 41-46(2019). http://www.sciencedirect.com/science/article/pii/S1369800118312071

    [11] Fang C W, Zhang Y J, Rong M M et al. Micro-area analysis of surface contaminations of GaAs photocathode in preparation process[J]. Acta Photonica Sinica, 48, 0925001(2019).

    [12] Guo J, Yang M Z, Zhao J et al. Research on residual gas adsorption on surface of InGaAs photocathode[J]. Optik, 179, 941-947(2019). http://www.ingentaconnect.com/content/el/00304026/2019/00000179/00000001/art00121

    [13] Tereshchenko O E, Paget D. Rowe A C H, et al. Clean reconstructed InAs(111) A and B surfaces using chemical treatments and annealing[J]. Surface Science, 603, 518-522(2009). http://www.sciencedirect.com/science/article/pii/S0039602808008595

    [14] Yoon S H, Kato K, Yokoyama C et al. Re-examination of effects of sulfur treatment on Al2O3 /InGaAs metal-oxide-semiconductor interface properties[J]. Journal of Applied Physics, 126, 184501(2019). http://www.researchgate.net/publication/337182981_Re-examination_of_effects_of_sulfur_treatment_on_Al_2_O_3_InGaAs_metal-oxide-semiconductor_interface_properties

    [15] Chanlek N, Herbert J D, Jones R M et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 47, 055110(2014). http://adsabs.harvard.edu/abs/2014JPhD...47e5110C

    [16] Sun Y, Pianetta P, Chen P T et al. Arsenic-dominated chemistry in the acid cleaning of InGaAs and InAlAs surfaces[J]. Applied Physics Letters, 93, 194103(2008). http://scitation.aip.org/content/aip/journal/apl/93/19/10.1063/1.3025852

    [17] Liu Z, Sun Y, Machuca F et al. Preparation of clean GaAs(100) studied by synchrotron radiation photoemission[J]. Journal of Vacuum Science & Technology A, 21, 212-218(2003).

    [18] Kohli R. Applications of UV-ozone cleaning technique for removal of surface contaminants[J]. Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, 11, 355-390(2019). http://www.sciencedirect.com/science/article/pii/B9780128155776000190

    [19] Lee K N, Donovan S M, Gila B et al. Surface chemical treatment for the cleaning of AlN and GaN surfaces[J]. Journal of the Electrochemical Society, 147, 3087-3090(2000).

    [20] Moulder J F. The impact of the scanning XPS microprobe on industrial applications of X-ray photoelectron spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 231, 43-49(2019). http://www.sciencedirect.com/science/article/pii/S0368204817301871

    [21] Hussey R J, Sproule G I. McCaffrey J P, et al. Characterization of oxides formed on InP, InGaAs, InAlAs, and InGaAs/InAlAs heterostructures at 300-500 ℃[J]. Oxidation of Metals, 57, 427-447(2002).

    [22] Ghosh S C, Biesinger M C. LaPierre R R, et al. The role of proximity caps during the annealing of UV-ozone oxidized GaAs[J]. Journal of Applied Physics, 101, 114321(2007).

    Minmin Rong, Yijun Zhang, Shiman Li, Gangcheng Jiao, Weixin Liu, Ziheng Wang, Zhaoxin Shu, Yunsheng Qian. InGaAs Surface Cleaning Based on Scanning Focused XPS Technique[J]. Acta Optica Sinica, 2021, 41(5): 0516004
    Download Citation