• Journal of Semiconductors
  • Vol. 42, Issue 6, 062302 (2021)
Md. Omar Faruque1, Rabiul Al Mahmud2, and Rakibul Hasan Sagor3
Author Affiliations
  • 1Islamic University of Technology (IUT), Board Bazar Gazipur, Gazipur 1704, Bangladesh
  • 2Islamic University of Technology (IUT), Board Bazar Gazipur, Gazipur 1704, Bangladesh
  • 3Islamic University of Technology (IUT), Board Bazar Gazipur, Gazipur 1704, Bangladesh
  • show less
    DOI: 10.1088/1674-4926/42/6/062302 Cite this Article
    Md. Omar Faruque, Rabiul Al Mahmud, Rakibul Hasan Sagor. Heavily doped silicon: A potential replacement of conventional plasmonic metals[J]. Journal of Semiconductors, 2021, 42(6): 062302 Copy Citation Text show less

    Abstract

    The plasmonic property of heavily doped p-type silicon is studied here. Although most of the plasmonic devices use metal–insulator–metal (MIM) waveguide in order to support the propagation of surface plasmon polaritons (SPPs), metals that possess a number of challenges in loss management, polarization response, nanofabrication etc. On the other hand, heavily doped p-type silicon shows similar plasmonic properties like metals and also enables us to overcome the challenges possessed by metals. For numerical simulation, heavily doped p-silicon is mathematically modeled and the theoretically obtained relative permittivity is compared with the experimental value. A waveguide is formed with the p-silicon-air interface instead of the metal–air interface. Formation and propagation of SPPs similar to MIM waveguides are observed.
    $\varepsilon \left( \omega \right) = {\varepsilon _\infty } - {{\omega _{\rm p}^2} / {\{{\omega ^2}[1 + i({1/ {\omega \tau )]\}}}}}.$(1)

    View in Article

    $ \varepsilon \left( \omega \right) = \left({\varepsilon _\infty } - {\omega _{\rm p}^2{\tau ^2}} / 1 + {\omega ^2}{\tau ^2}\right) + i\left[{{\omega _{\rm p}^2\tau } / {\omega \left( {1 + {\omega ^2}{\tau ^2}} \right)}}\right], $ (2)

    View in Article

    $\varepsilon \left( \omega \right) = [{\varepsilon _\infty } - ({\sigma / {{\omega ^2}{\varepsilon _0}\tau }})] + i({\sigma / {{\omega ^3}{\tau ^2}{\varepsilon _0}}}),$(3)

    View in Article

    $ \varepsilon _{\rm r}^{({\rm f})}(\omega ) = 1 - \frac{{\Omega _{\rm p}^2}}{{\omega {\kern 1pt} (\omega - i{\Gamma _0})}}, $ (4)

    View in Article

    $ \varepsilon _{\rm r}^{({\rm b})}(\omega ) = \sum\limits_{n = 1}^k {\frac{{{f_n}\omega _{\rm p}^2}}{{(\omega _n^2 - {\omega ^2}) + i\omega \,{\Gamma _n}}}}, $ (5)

    View in Article

    $ {\varepsilon _{\rm r}}(\omega ) = \varepsilon _{\rm r}^{({\rm f})}(\omega ) + \varepsilon _{\rm r}^{({\rm b})}(\omega ). $ (6)

    View in Article

    Md. Omar Faruque, Rabiul Al Mahmud, Rakibul Hasan Sagor. Heavily doped silicon: A potential replacement of conventional plasmonic metals[J]. Journal of Semiconductors, 2021, 42(6): 062302
    Download Citation