• Journal of Semiconductors
  • Vol. 42, Issue 9, 091901 (2021)
Qingqing Wang1, Yun Zheng1, Chonghao Zhai1, Xudong Li1, Qihuang Gong1、2、3、4, and Jianwei Wang1、2、3、4
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • show less
    DOI: 10.1088/1674-4926/42/9/091901 Cite this Article
    Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901 Copy Citation Text show less
    References

    [1] N Gisin, R Thew. Quantum communication. Nat Photonics, 1, 165(2007).

    [2] W K Wootters, W H Zurek. A single quantum cannot be cloned. Nature, 299, 802(1982).

    [3] C H Bennett, G Brassard. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 560, 7(2014).

    [4] P W Shor, J Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 85, 441(2000).

    [5] . Quantum cryptography based on Bell's theorem. Phys Rev Lett, 67, 661(1991).

    [6] M Curty, M Lewenstein, N Lütkenhaus. Entanglement as a precondition for secure quantum key distribution. Phys Rev Lett, 92, 217903(2004).

    [7] S K Liao, W Q Cai, W Y Liu et al. Satellite-to-ground quantum key distribution. Nature, 549, 43(2017).

    [8] C H Bennett, F Bessette, G Brassard et al. Experimental quantum cryptography. J Cryptol, 5, 3(1992).

    [9] Y A Chen, Q Zhang, T Y Chen et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres. Nature, 589, 214(2021).

    [10] T Honjo, K Inoue, H Takahashi. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt Lett, 29, 2797(2004).

    [11] P Sibson, J E Kennard, S Stanisic et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 4, 172(2017).

    [12] C X Ma, W D Sacher, Z Y Tang et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica, 3, 1274(2016).

    [13] D Bunandar, A Lentine, C Lee et al. Metropolitan quantum key distribution with silicon photonics. Phys Rev X, 8, 021009(2018).

    [14] M Avesani, L Calderaro, M Schiavon et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf, 7, 93(2021).

    [15] A Orieux, E Diamanti. Recent advances on integrated quantum communications. J Opt, 18, 083002(2016).

    [16] P Sibson, C Erven, M Godfrey et al. Chip-based quantum key distribution. Nat Commun, 8, 1(2017).

    [17] L Lydersen, C Wiechers, C Wittmann et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics, 4, 686(2010).

    [18] Y Zhao, C H F Fung, B Qi et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A, 78, 042333(2008).

    [19] V Makarov, A Anisimov, J Skaar. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A, 74, 022313(2006).

    [20] H K Lo, M Curty, B Qi. Measurement-device-independent quantum key distribution. Phys Rev Lett, 108, 130503(2012).

    [21] C K Hong, Z Y Ou, L Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 59, 2044(1987).

    [22] C Agnesi, B da Lio, D Cozzolino et al. Hong–Ou–Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt Lett, 44, 271(2019).

    [23] J G Rarity, P R Tapster, R Loudon. Non-classical interference between independent sources. J Opt B, 7, S171(2005).

    [24] K J Wei, W Li, H Tan et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys Rev X, 10, 031030(2020).

    [25] H Semenenko, P Sibson, M G Thompson et al. Interference between independent photonic integrated devices for quantum key distribution. Opt Lett, 44, 275(2019).

    [26] H Semenenko, P Sibson, A Hart et al. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238(2020).

    [27] S Wehner, D Elkouss, R Hanson. Quantum Internet: A vision for the road ahead. Science, 362, eaam9288(2018).

    [28] J F Clauser, M A Horne, A Shimony et al. Proposed experiment to test local hidden-variable theories. Phys Rev Lett, 23, 880(1969).

    [29] A Acín, S Massar, S Pironio. Efficient quantum key distribution secure against no-signalling eavesdroppers. New J Phys, 8, 126(2006).

    [30] A Acín, N Brunner, N Gisin et al. Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett, 98, 230501(2007).

    [31] M McKague. Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices. New J Phys, 11, 103037(2009).

    [32] U Vazirani, T Vidick. Fully device-independent quantum key distribution. Phys Rev Lett, 113, 140501(2014).

    [33] J Yin, Y Cao, Y H Li et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140(2017).

    [34] J Liu, R B Su, Y M Wei et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 14, 586(2019).

    [35] J Zhao, C X Ma, M Rüsing et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett, 124, 163603(2020).

    [36] J C Duan, J N Zhang, Y J Zhu et al. Generation of narrowband counterpropagating polarization-entangled photon pairs based on thin-film lithium niobate on insulator. J Opt Soc Am B, 37, 2139(2020).

    [37] C Autebert, N Bruno, A Martin et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica, 3, 143(2016).

    [38] J W Wang, S Paesani, Y H Ding et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285(2018).

    [39] G Corrielli, A Crespi, R Geremia et al. Rotated waveplates in integrated waveguide optics. Nat Commun, 5, 4249(2014).

    [40] X Zhang, B A Bell, A Mahendra et al. Integrated silicon nitride time-bin entanglement circuits. Opt Lett, 43, 3469(2018).

    [41] C L Li, D J Liu, D X Dai. Multimode silicon photonics. Nanophotonics, 8, 227(2018).

    [42] L T Feng, M Zhang, X Xiong et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf, 5, 2(2019).

    [43] J W Silverstone, D Bonneau, K Ohira et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics, 8, 104(2014).

    [44] J W Silverstone, R Santagati, D Bonneau et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat Commun, 6, 7948(2015).

    [45] D Grassani, S Azzini, M Liscidini et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2, 88(2015).

    [46] F Mazeas, M Traetta, M Bentivegna et al. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Opt Express, 24, 28731(2016).

    [47] S Paesani, M Borghi, S Signorini et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat Commun, 11, 2505(2020).

    [48] J Suo, S Dong, W Zhang et al. Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity. Opt Express, 23, 3985(2015).

    [49] F X Wang, W Q Wang, R Niu et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser Photonics Rev, 14, 1900190(2020).

    [50] J W Wang, F Sciarrino, A Laing et al. Integrated photonic quantum technologies. Nat Photonics, 14, 273(2020).

    [51] J W Wang, D Bonneau, M Villa et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica, 3, 407(2016).

    [52] J G Ren, P Xu, H L Yong et al. Ground-to-satellite quantum teleportation. Nature, 549, 70(2017).

    [53] D Gottesman, I L Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402, 390(1999).

    [54] B J Metcalf, J B Spring, P C Humphreys et al. Quantum teleportation on a photonic chip. Nat Photonics, 8, 770(2014).

    [55] X Y Lu, Q Li, D A Westly et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat Phys, 15, 373(2019).

    [56] M V G Dutt, L Childress, L Jiang et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316, 1312(2007).

    [57] T Gaebel, M Domhan, I Popa et al. Room-temperature coherent coupling of single spins in diamond. Nat Phys, 2, 408(2006).

    [58] R Hanson, F M Mendoza, R J Epstein et al. Polarization and readout of coupled single spins in diamond. Phys Rev Lett, 97, 087601(2006).

    [59] R J Epstein, F M Mendoza, Y K Kato et al. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat Phys, 1, 94(2005).

    [60] P C Maurer, G Kucsko, C Latta et al. Room-temperature quantum bit memory exceeding one second. Science, 336, 1283(2012).

    [61] E Togan, Y Chu, A S Trifonov et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466, 730(2010).

    [62] Y He, Y M He, Y J Wei et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys Rev Lett, 119, 060501(2017).

    [63] F Rozpędek, R Yehia, K Goodenough et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Phys Rev A, 99, 052330(2019).

    [64] P Lodahl, S Mahmoodian, S Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 87, 347(2015).

    [65] C W Thiel, T Böttger, R L Cone. Rare-earth-doped materials for applications in quantum information storage and signal processing. J Lumin, 131, 353(2011).

    [66] B Lauritzen, J Minář, Riedmatten H de et al. Approaches for a quantum memory at telecommunication wavelengths. Phys Rev A, 83, 012318(2011).

    [67] M Afzelius, C Simon, H de Riedmatten et al. Multimode quantum memory based on atomic frequency combs. Phys Rev A, 79, 052329(2009).

    [68] N Sangouard, C Simon, M Afzelius et al. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening. Phys Rev A, 75, 032327(2007).

    [69] V Damon, M Bonarota, A Louchet-Chauvet et al. Revival of silenced echo and quantum memory for light. New J Phys, 13, 093031(2011).

    [70] P Jobez, N Timoney, C Laplane et al. Towards highly multimode optical quantum memory for quantum repeaters. Phys Rev A, 93, 032327(2016).

    [71] M Sabooni, F Beaudoin, A Walther et al. Storage and recall of weak coherent optical pulses with an efficiency of 25%. Phys Rev Lett, 105, 060501(2010).

    [72] T S Yang, Z Q Zhou, Y L Hua et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat Commun, 9, 1(2018).

    [73] J H Davidson, P Lefebvre, J Zhang et al. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys Rev A, 101, 042333(2020).

    [74] A Amari, A Walther, M Sabooni et al. Towards an efficient atomic frequency comb quantum memory. J Lumin, 130, 1579(2010).

    [75] M F Askarani, M L G Puigibert, T Lutz et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys Rev Appl, 11, 054056(2019).

    [76] C Liu, Z Q Zhou, T X Zhu et al. Reliable coherent optical memory based on a laser-written waveguide. Optica, 7, 192(2020).

    [77] C Liu, T X Zhu, M X Su et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys Rev Lett, 125, 260504(2020).

    [78] E Saglamyurek, N Sinclair, J Jin et al. Broadband waveguide quantum memory for entangled photons. Nature, 469, 512(2011).

    [79] C H Bennett, S J Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 69, 2881(1992).

    [80] I Craiciu, M Lei, J Rochman et al. Nanophotonic quantum storage at telecommunication wavelength. Phys Rev Appl, 12, 024062(2019).

    [81] H Y Liu, X H Tian, C S Gu et al. Drone-based entanglement distribution towards mobile quantum networks. Natl Sci Rev, 7, 921(2020).

    [82] B X Wang, Y Q Mao, L Shen et al. Long-distance transmission of quantum key distribution coexisting with classical optical communication over a weakly-coupled few-mode fiber. Opt Express, 28, 12558(2020).

    [83] Y Q Mao, B X Wang, C X Zhao et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt Express, 26, 6010(2018).

    [84] C Cai, Y M Sun, Y R Zhang et al. Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber. Opt Express, 27, 5125(2019).

    Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901
    Download Citation