• Journal of Semiconductors
  • Vol. 42, Issue 9, 091901 (2021)
Qingqing Wang1, Yun Zheng1, Chonghao Zhai1, Xudong Li1, Qihuang Gong1、2、3、4, and Jianwei Wang1、2、3、4
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • show less
    DOI: 10.1088/1674-4926/42/9/091901 Cite this Article
    Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901 Copy Citation Text show less

    Abstract

    Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics. Integrated quantum photonics offers significant advantages of dense integration, high stability and scalability, which enables a vital platform for the implementation of quantum information processing and quantum communications. This article reviews recent experimental progress and advances in the development of integrated quantum photonic devices and systems for quantum communications and quantum networks.
    $\left| \psi \right\rangle = \frac{1}{{\sqrt N }}\sum_{j = 1}^N {{{\rm e}^{i2\pi {\delta _j}t}}{\rm {e}^{ik{z_j}}}\left| {{g_1} \cdots {e_j} \cdots {g_N}} \right\rangle } ,$(1)

    View in Article

    Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901
    Download Citation