• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011004 (2021)
Liang Xu and Lijian Zhang*
Author Affiliations
  • National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
  • show less
    DOI: 10.3788/LOP202158.1011004 Cite this Article Set citation alerts
    Liang Xu, Lijian Zhang. Progress in Weak-Value-Based Quantum Metrology and Tomography[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011004 Copy Citation Text show less
    References

    [1] Aharonov Y, Vaidman L. Properties of a quantum system during the time interval between two measurements[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 41, 11-20(1990).

    [2] Aharonov Y, Bergmann P G, Lebowitz J L. Time symmetry in the quantum process of measurement[J]. Physical Review, 134, B1410-B1416(1964).

    [3] Xu X Y, Pan W W, Wang Q Q et al. Measurements of nonlocal variables and demonstration of the failure of the product rule for a pre- and postselected pair of photons[J]. Physical Review Letters, 122, 100405(2019).

    [4] Aharonov Y, Vaidman L. On the two-state vector reformulation of quantum mechanics[J]. Physica Scripta, T76, 85(1998).

    [5] Aharonov Y, Vaidman L. The two-state vector formalism: an updated review[M]. //Muga J G, Mayato R S, Egusquiza Í L. Time in quantum mechanics. Lecture notes in physics. Heidelberg: Springer, 734, 399-477(2008).

    [6] Aharonov Y, Popescu S, Tollaksen J. A time-symmetric formulation of quantum mechanics[J]. Physics Today, 63, 27-32(2010).

    [7] Aharonov Y, Albert D Z, Vaidman L. How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100[J]. Physical Review Letters, 60, 1351-1354(1988).

    [8] Kofman A G, Ashhab S, Nori F. Nonperturbative theory of weak pre- and post-selected measurements[J]. Physics Reports, 520, 43-133(2012).

    [9] Dressel J, Jordan A N. Weak-values are universal in von Neumann measurements[J]. Physical Review Letters, 109, 230402(2012).

    [10] Tamir B, Cohen E. Introduction to weak measurements and weak-values[J]. Quanta, 2, 7-17(2013).

    [11] Dressel J, Malik M, Miatto F M et al. Colloquium: understanding quantum weak-values: basics and applications[J]. Reviews of Modern Physics, 86, 307-316(2014).

    [12] Knee G C, Combes J, Ferrie C et al. Weak-value amplification: state of play[J]. Quantum Measurements and Quantum Metrology, 3, 32-37(2016).

    [13] Steinberg A M. A light touch[J]. Nature, 463, 890-891(2010).

    [14] Aharonov Y, Botero A. Quantum averages of weak-values[J]. Physical Review A, 72, 052111(2005).

    [15] Aharonov Y, Botero A, Popescu S et al. Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak-values[J]. Physics Letters A, 301, 130-138(2002). http://www.sciencedirect.com/science/article/pii/S0375960102009866

    [16] Resch K J, Steinberg A M. Extracting joint weak-values with local, single-particle measurements[J]. Physical Review Letters, 92, 130402(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000092000013130402000001&idtype=cvips&gifs=Yes

    [17] Lundeen J S, Steinberg A M. Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox[J]. Physical Review Letters, 102, 020404(2009).

    [18] Resch K J, Lundeen J S, Steinberg A M. Experimental realization of the quantum box problem[J]. Physics Letters A, 324, 125-131(2004).

    [19] Williams N S, Jordan A N. Weak-values and the Leggett-Garg inequality in solid-state qubits[J]. Physical Review Letters, 100, 026804(2008). http://europepmc.org/abstract/MED/18232905

    [20] Dressel J, Broadbent C J, Howell J C et al. Experimental violation of two-party Leggett-Garg inequalities with semiweak measurements[J]. Physical Review Letters, 106, 040402(2011).

    [21] Pusey M F. Anomalous weak-values are proofs of contextuality[J]. Physical Review Letters, 113, 200401(2014). http://europepmc.org/abstract/MED/25432026

    [22] Wiseman H M. Weak-values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation[J]. Physical Review A, 65, 032111(2002). http://adsabs.harvard.edu/abs/2002PhRvA..65c2111W

    [23] Mir R, Lundeen J S, Mitchell M W et al. A double-slit ‘which-way’ experiment on the complementarity-uncertainty debate[J]. New Journal of Physics, 9, 287(2007). http://arxiv.org/abs/0706.3966

    [24] Dressel J. Weak-values as interference phenomena[J]. Physical Review A, 91, 032116(2015). http://arxiv.org/abs/1410.0943v3

    [25] Dressel J, Jordan A N. Significance of the imaginary part of the weak-value[J]. Physical Review A, 85, 012107(2012).

    [26] Brunner N, Acín A, Collins D et al. Optical telecom networks as weak quantum measurements with postselection[J]. Physical Review Letters, 91, 180402(2003).

    [27] Brunner N, Scarani V, Wegmüller M et al. Direct measurement of superluminal group velocity and signal velocity in an optical fiber[J]. Physical Review Letters, 93, 203902(2004).

    [28] Solli D R, McCormick C F, Chiao R Y et al. Fast light, slow light, and phase singularities: a connection to generalized weak-values[J]. Physical Review Letters, 92, 043601(2004).

    [29] Camacho R M, Dixon P B, Glasser R T et al. Realization of anall-optical zero to pi cross-phase modulation jump[J]. Physical Review Letters, 102, 013902(2009).

    [30] Cho Y W, Kim Y, Choi Y H et al. Emergence of the geometric phase from quantum measurement back-action[J]. Nature Physics, 15, 665-670(2019).

    [31] Kocsis S, Braverman B, Ravets S et al. Observing the average trajectories of single photons in a two-slit interferometer[J]. Science, 332, 1170-1173(2011).

    [32] von Neumann J. Mathematical foundations of quantum mechanics: new edition[M](2018).

    [33] Jozsa R. Complex weak-values in quantum measurement[J]. Physical Review A, 76, 044103(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000007000010000130000001&idtype=cvips&gifs=Yes

    [34] Parks A D, Gray J E. Variance control in weak-value measurement pointers[J]. Physical Review A, 84, 012116(2011).

    [35] Knee G C, Briggs G A D. Seeing opportunity in every difficulty: protecting information with weak-value techniques[J]. Quantum Studies: Mathematics and Foundations, 5, 505-517(2018). http://link.springer.com/article/10.1007/s40509-018-0164-z

    [36] Pan Y M, Zhang J, Cohen E et al. Weak-to-strong transition of quantum measurement in a trapped-ion system[J]. Nature Physics, 16, 1206-1210(2020). http://www.nature.com/articles/s41567-020-0973-y

    [37] Johansen L M. Weak measurements with arbitrary probe states[J]. Physical Review Letters, 93, 120402(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000093000012120402000001&idtype=cvips&gifs=Yes

    [38] Pryde G J, O’Brien J L, White A G et al. Measurement of quantum weak-values of photon polarization[J]. Physical Review Letters, 94, 220405(2005).

    [39] Romito A, Gefen Y, Blanter Y M. Weak-values of electron spin in a double quantum dot[J]. Physical Review Letters, 100, 056801(2008).

    [40] Shpitalnik V, Gefen Y, Romito A. Tomography of many-body weak-values: Mach-Zehnder interferometry[J]. Physical Review Letters, 101, 226802(2008).

    [41] Cho Y W, Lim H T, Ra Y S et al. Weak-value measurement with an incoherent measuring device[C]. //CLEO/QELS: 2010 Laser Science to Photonic Applications, May 16-21, 2010, San Jose, CA, USA, 1-2(2010).

    [42] Shikano Y, Hosoya A. Weak-values with decoherence[J]. Journal of Physics A, 43, 025304(2010).

    [43] Iinuma M, Suzuki Y, Taguchi G et al. Weak measurement of photon polarization by back-action-induced path interference[J]. New Journal of Physics, 13, 033041(2011).

    [44] Dressel J, Jordan A N. Sufficient conditions for uniqueness of the weak-value[J]. Journal of Physics A, 45, 015304(2012). http://www.ams.org/mathscinet-getitem?mr=2871392

    [45] Puentes G, Hermosa N, Torres J P. Weak measurements with orbital-angular-momentum pointer states[J]. Physical Review Letters, 109, 040401(2012). http://www.ncbi.nlm.nih.gov/pubmed/23006067

    [46] Susa Y, Shikano Y, Hosoya A. Optimal probe wave function of weak-value amplification[J]. Physical Review A, 85, 052110(2012).

    [47] Turek Y, Kobayashi H, Akutsu T et al. Post-selected von Neumann measurement with Hermite-Gaussian and Laguerre-Gaussian pointer states[J]. New Journal of Physics, 17, 083029(2015).

    [48] Turek Y, Maimaiti W, Shikano Y et al. Advantages of nonclassical pointer states in postselected weak measurements[J]. Physical Review A, 92, 022109(2015). http://arxiv.org/abs/1507.07322

    [49] Qin L P, Feng W, Li X Q. Simple understanding of quantum weak-values[J]. Scientific Reports, 6, 20286(2016).

    [50] Flack R, Monachello V, Hiley B et al. A method for measuring the weak-value of spin for metastable atoms[J]. Entropy, 20, 566(2018). http://www.researchgate.net/publication/326705746_A_Method_for_Measuring_the_Weak_Value_of_Spin_for_Metastable_Atoms

    [51] Ogawa K, Kobayashi H, Tomita A. Operational formulation of weak-values without probe systems[J]. Physical Review A, 101, 042117(2020).

    [52] Wu S J, Li Y. Weak measurements beyond the Aharonov-Albert-Vaidman formalism[J]. Physical Review A, 83, 052106(2011).

    [53] Geszti T. Postselected weak measurement beyond the weak-value[J]. Physical Review A, 81, 044102(2010). http://arxiv.org/abs/0909.2206v4

    [54] Koike T, Tanaka S. Limits on amplification by Aharonov-Albert-Vaidman weak measurement[J]. Physical Review A, 84, 062106(2011). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000011000012000123000001&idtype=cvips&gifs=Yes

    [55] Zhu X M, Zhang Y X, Pang S S et al. Quantum measurements with preselection and postselection[J]. Physical Review A, 84, 052111(2011).

    [56] di Lorenzo A. Full counting statistics of weak-value measurement[J]. Physical Review A, 85, 032106(2012).

    [57] Nakamura K, Nishizawa A, Fujimoto M K. Evaluation of weak measurements to all orders[J]. Physical Review A, 85, 012113(2012).

    [58] Nishizawa A, Nakamura K, Fujimoto M K. Weak-value amplification in a shot-noise-limited interferometer[J]. Physical Review A, 85, 062108(2012).

    [59] Chen S Z, Zhou X X, Mi C Q et al. Modified weak measurements for the detection of the photonic spin Hall effect[J]. Physical Review A, 91, 062105(2015).

    [60] Qiu J D, Ren C L, Li Z X et al. Extended validity of weak measurement[J]. Chinese Physics B, 29, 064214(2020).

    [61] Ren J H, Qin L P, Feng W et al. Weak-value-amplification analysis beyond the Aharonov-Albert-Vaidman limit[J]. Physical Review A, 102, 042601(2020). http://www.researchgate.net/publication/344493734_Weak-value-amplification_analysis_beyond_the_Aharonov-Albert-Vaidman_limit

    [62] Pang S S, Wu S J, Chen Z B. Weak measurement with orthogonal preselection and postselection[J]. Physical Review A, 86, 022112(2012).

    [63] Ritchie N W M, Story J G, Hulet R G. Realization of a measurement of a“weak-value”[J]. Physical Review Letters, 66, 1107-1110(1991).

    [64] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).

    [65] Dixon P B, Starling D J, Jordan A N et al. Ultrasensitive beam deflection measurement via interferometric weak-value amplification[J]. Physical Review Letters, 102, 173601(2009). http://europepmc.org/abstract/MED/19518781

    [66] Howell J C, Starling D J, Dixon P B et al. Interferometric weak-value deflections: quantum and classical treatments[J]. Physical Review A, 81, 033813(2010).

    [67] Qin Y, Li Y, He H et al. Measurement of spin Hall effect of reflected light[J]. Optics Letters, 34, 2551-2553(2009). http://www.ncbi.nlm.nih.gov/pubmed/19724486/

    [68] Brunner N, Simon C. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?[J]. Physical Review Letters, 105, 010405(2010). http://www.ncbi.nlm.nih.gov/pubmed/20867428

    [69] Starling D J, Dixon P B, Williams N S et al. Continuous phase amplification with a Sagnac interferometer[J]. Physical Review A, 82, 011802(2010).

    [70] Starling D J, Dixon P B, Jordan A N et al. Precision frequency measurements with interferometric weak-values[J]. Physical Review A, 82, 063822(2010).

    [71] Feizpour A, Xing X X, Steinberg A M. Amplifying single-photon nonlinearity using weak measurements[J]. Physical Review Letters, 107, 133603(2011). http://www.ncbi.nlm.nih.gov/pubmed/22026853

    [72] Zilberberg O, Romito A, Gefen Y. Charge sensing amplification via weak-values measurement[J]. Physical Review Letters, 106, 080405(2011).

    [73] Turner M D, Hagedorn C A, Schlamminger S et al. Picoradian deflection measurement with an interferometric quasi-autocollimator using weak-value amplification[J]. Optics Letters, 36, 1479-1481(2011). http://www.ncbi.nlm.nih.gov/pubmed/21499396

    [74] Hogan J M, Hammer J, Chiow S W et al. Precision angle sensor using an optical lever inside a Sagnac interferometer[J]. Optics Letters, 36, 1698-1700(2011).

    [75] Pfeifer M, Fischer P. Weak-value amplified optical activity measurements[J]. Optics Express, 19, 16508-16517(2011).

    [76] Zhou X X, Xiao Z C, Luo H L et al. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements[J]. Physical Review A, 85, 043809(2012). http://dx.doi.org/10.1103/physreva.85.043809

    [77] Gorodetski Y, Bliokh K Y, Stein B et al. Weak measurements of light chirality with a plasmonic slit[J]. Physical Review Letters, 109, 013901(2012). http://www.ncbi.nlm.nih.gov/pubmed/23031106

    [78] Egan P, Stone J A. Weak-value thermostat with 0.2 mK precision[J]. Optics Letters, 37, 4991-4993(2012).

    [79] Viza G I, Martínez-Rincón J, Howland G A et al. Weak-values technique for velocity measurements[J]. Optics Letters, 38, 2949-2952(2013). http://europepmc.org/abstract/med/24104618

    [80] Jayaswal G, Mistura G, Merano M. Weak measurement of the Goos-Hänchen shift[J]. Optics Letters, 38, 1232-1234(2013). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-8-1232

    [81] Li C F, Xu X Y, Tang J S et al. Ultrasensitive phase estimation with white light[J]. Physical Review A, 83, 044102(2011).

    [82] Xu X Y, Kedem Y, Sun K et al. Phase estimation with weak measurement using a white light source[J]. Physical Review Letters, 111, 033604(2013). http://www.ncbi.nlm.nih.gov/pubmed/23909319

    [83] Jayaswal G, Mistura G, Merano M. Observation of the Imbert-Fedorov effect via weak-value amplification[J]. Optics Letters, 39, 2266-2269(2014).

    [84] Magaña-Loaiza O S, Mirhosseini M, Rodenburg B et al. Amplification of angular rotations using weak measurements[C]. //Frontiers in Optics 2014, October 19-23, 2014, Tucson, Arizona United States. Washington, D.C.: OSA, FTh4A.4(2014).

    [85] Hallaji M, Feizpour A, Dmochowski G et al. Weak-value amplification of the nonlinear effect of a single photon[J]. Nature Physics, 13, 540-544(2017).

    [86] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017). http://europepmc.org/abstract/MED/28357995

    [87] Chen S Z, Mi C Q, Cai L et al. Observation of the Goos-Hänchen shift in graphene via weak measurements[J]. Applied Physics Letters, 110, 031105(2017). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4974212

    [88] Chen S Z, Mi C Q, Wu W J et al. Weak-value amplification for Weyl-point separation in momentum space[J]. New Journal of Physics, 20, 103050(2018).

    [89] Steinmetz J, Lyons K, Song M et al. Enhanced on-chip frequency measurement using weak-value amplification[EB/OL]. (2021-03-29)[2021-04-01]. https://arxiv.org/abs/2103.15752

    [90] Braunstein S L, Caves C M. Statistical distance and the geometry of quantum states[J]. Physical Review Letters, 72, 3439-3443(1994). http://www.europepmc.org/abstract/MED/10056200

    [91] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [92] Braunstein S L. Quantum limits on precision measurements of phase[J]. Physical Review Letters, 69, 3598-3601(1992).

    [93] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit[J]. Science, 306, 1330-1336(2004). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=15211871&site=ehost-live

    [94] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. Physical Review Letters, 96, 010401(2006).

    [95] Resch K J, Pregnell K L, Prevedel R et al. Time-reversal and super-resolving phase measurements[J]. Physical Review Letters, 98, 223601(2007).

    [96] Polino E, Valeri M, Spagnolo N et al. Photonic quantum metrology[J]. AVS Quantum Science, 2, 024703(2020).

    [97] Barnett S M, Fabre C, Maıtre A. Ultimate quantum limits for resolution of beam displacements[J]. The European Physical Journal D, 22, 513-519(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=907772

    [98] Combes J, Ferrie C, Jiang Z et al. Quantum limits on postselected, probabilistic quantum metrology[J]. Physical Review A, 89, 052117(2014). http://d.wanfangdata.com.cn/periodical/e746061c3ab7f9cef3b45a488f2c7c18

    [99] Lee J, Tsutsui I. Merit of amplification by weak measurement in view of measurement uncertainty[J]. Quantum Studies: Mathematics and Foundations, 1, 65-78(2014).

    [100] Combes J, Ferrie C. Cost of postselection in decision theory[J]. Physical Review A, 92, 022117(2015).

    [101] Susa Y, Tanaka S. Statistical hypothesis testing by weak-value amplification: proposal and evaluation[J]. Physical Review A, 92, 012112(2015).

    [102] Arvidsson-Shukur D R M, Yunger Halpern N, Lepage H V et al. Quantum advantage in postselected metrology[J]. Nature Communications, 11, 3775(2020). http://www.nature.com/articles/s41467-020-17559-w

    [103] Zhang L J, Datta A, Walmsley I A. Precision metrology using weak measurements[J]. Physical Review Letters, 114, 210801(2015).

    [104] Hofmann H F, Goggin M E, Almeida M P et al. Estimation of a quantum interaction parameter using weak measurements: theory and experiment[J]. Physical Review A, 86, 040102(2012).

    [105] Tanaka S, Yamamoto N. Information amplification viapostselection: a parameter-estimation perspective[J]. Physical Review A, 88, 042116(2013). http://arxiv.org/abs/1306.2409

    [106] Alves G B, Escher B M, de Matos Filho R L et al. Weak-value amplification as an optimal metrological protocol[J]. Physical Review A, 91, 062107(2015).

    [107] Li F, Huang J Z, Zeng G H. Adaptive weak-value amplification with adjustable postselection[J]. Physical Review A, 96, 032112(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.032112

    [108] Xu L, Liu Z X, Datta A et al. Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification[J]. Physical Review Letters, 125, 080501(2020).

    [109] Pang S S, Dressel J, Brun T A. Entanglement-assisted weak-value amplification[J]. Physical Review Letters, 113, 030401(2014).

    [110] Chen J S, Liu B H, Hu M J et al. Realization of entanglement-assisted weak-value amplification in a photonic system[J]. Physical Review A, 99, 032120(2019). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032120

    [111] Stárek R, Mičuda M, Hošák R et al. Experimental entanglement-assisted weak measurement of phase shift[J]. Optics Express, 28, 34639-34655(2020).

    [112] Pang S S, Brun T A. Suppressing technical noise in weak measurements by entanglement[J]. Physical Review A, 92, 012120(2015).

    [113] Pang S S, Brun T A. Improving the precision of weak measurements by postselection measurement[J]. Physical Review Letters, 115, 120401(2015). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111873327.html

    [114] Jordan A N, Tollaksen J, Troupe J E et al. Heisenberg scaling with weak measurement:a quantum state discrimination point of view[J]. Quantum Studies: Mathematics and Foundations, 2, 5-15(2015).

    [115] Chen G, Zhang L J, Zhang W H et al. Achieving Heisenberg-scaling precision with projective measurement on single photons[J]. Physical Review Letters, 121, 060506(2018).

    [116] Chen G, Aharon N, Sun Y N et al. Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states[J]. Nature Communications, 9, 93(2018).

    [117] Torres J P, Salazar-Serrano L J. Weak-value amplification: a view from quantum estimation theory that highlights what it is and what isn’t[J]. Scientific Reports, 6, 19702(2016).

    [118] Knee G C, Briggs G A D, Benjamin S C et al. Quantum sensors based on weak-value amplification cannot overcome decoherence[J]. Physical Review A, 87, 012115(2013).

    [119] Pang S S, Alonso J R G, Brun T A et al. Protecting weak measurements against systematic errors[J]. Physical Review A, 94, 012329(2016).

    [120] Ferrie C, Combes J. Weakvalue amplification is suboptimal for estimation and detection[J]. Physical Review Letters, 112, 040406(2014). http://arxiv.org/abs/1402.0199v1

    [121] Jordan A N, Martínez-Rincón J, Howell J C. Technical advantages for weak-value amplification: when less is more[J]. Physical Review X, 4, 011031(2014).

    [122] Sinclair J, Hallaji M, Steinberg A M et al. Weak-value amplification and optimal parameter estimation in the presence of correlated noise[J]. Physical Review A, 96, 052128(2017).

    [123] Starling D J, Dixon P B, Jordan A N et al. Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak-values[J]. Physical Review A, 80, 041803(2009).

    [124] Kedem Y. Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak-values[J]. Physical Review A, 85, 060102(2012). http://www.oalib.com/paper/3385537

    [125] Knee G C, Gauger E M. When amplification with weak-values fails to suppress technical noise[J]. Physical Review X, 4, 011032(2014).

    [126] Viza G I, Martínez-Rincón J, Alves G B et al. Experimentally quantifying the advantages of weak-values-based metrology[C]. //CLEO: QELS_Fundamental Science 2015, May 10-15, 2015, San Jose, California United States. Washington, D.C.: OSA, FM1A.2(2015).

    [127] Harris J, Boyd R W, Lundeen J S. Weak-value amplification can outperform conventional measurement in the presence of detector saturation[J]. Physical Review Letters, 118, 070802(2017).

    [128] Dressel J, Lyons K, Jordan A N et al. Strengthening weak-value amplification with recycled photons[J]. Physical Review A, 88, 023821(2013). http://arxiv.org/abs/1305.4520

    [129] Lyons K, Dressel J, Jordan A N et al. Power-recycled weak-value-based metrology[J]. Physical Review Letters, 114, 170801(2015).

    [130] Wang Y T, Tang J S, Hu G et al. Experimental demonstration of higher precision weak-value-based metrology using power recycling[J]. Physical Review Letters, 117, 230801(2016).

    [131] Strübi G, Bruder C. Measuring ultrasmall time delays of light by joint weak measurements[J]. Physical Review Letters, 110, 083605(2013).

    [132] Fang C, Huang J Z, Yu Y et al. Ultra-small time-delay estimation via a weak measurement technique with post-selection[J]. Journal of Physics B, 49, 175501(2016).

    [133] Martínez-Rincón J, Liu W T, Viza G I et al. Can anomalous amplification be attained without postselection?[J]. Physical Review Letters, 116, 100803(2016).

    [134] Liu W T, Martínez-Rincón J, Viza G I et al. Anomalous amplification of a homodyne signal via almost-balanced weak-values[J]. Optics Letters, 42, 903-906(2017). http://europepmc.org/abstract/MED/28248327

    [135] Martínez-Rincón J, Mullarkey C A, Viza G I et al. Ultrasensitive inverse weak-value tilt meter[J]. Optics Letters, 42, 2479-2482(2017).

    [136] Lyons K, Howell J C, Jordan A N. Noise suppression in inverse weak-value-based phase detection[J]. Quantum Studies: Mathematics and Foundations, 5, 579-588(2018).

    [137] Yin P, Zhang W H, Xu L et al. Improving the precision of optical metrology by detecting fewer photons[EB/OL]. (2021-03-23)[2021-04-01]. https://arxiv.org/abs/2103.12373

    [138] Zhang Z H, Chen G, Xu X Y et al. Ultrasensitive biased weak measurement for longitudinal phase estimation[J]. Physical Review A, 94, 053843(2016).

    [139] Li D M, Guan T, He Y H et al. A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances[J]. Biosensors and Bioelectronics, 110, 103-109(2018).

    [140] Li D M, Guan T, Liu F et al. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain[J]. Applied Physics Letters, 112, 213701(2018). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.5019816

    [141] Thew R T, Nemoto K, White A G et al. Qudit quantum-state tomography[J]. Physical Review A, 66, 012303(2002).

    [142] James D F V, Kwiat P G, Munro W J et al. Measurement of qubits[J]. Physical Review A, 64, 052312(2001).

    [143] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement[J]. Reviews of Modern Physics, 81, 865-942(2009).

    [144] Xu H C, Xu F X, Theurer T et al. Experimental quantification of coherence of a tunable quantum detector[J]. Physical Review Letters, 125, 060404(2020). http://www.researchgate.net/publication/343504258_Experimental_Quantification_of_Coherence_of_a_Tunable_Quantum_Detector

    [145] Pallister S, Linden N, Montanaro A. Optimal verification of entangled states with local measurements[J]. Physical Review Letters, 120, 170502(2018).

    [146] Lundeen J S, Sutherland B, Patel A et al. Direct measurement of the quantum wavefunction[J]. Nature, 474, 188-191(2011). http://ui.adsabs.harvard.edu/abs/arXiv:1112.3575

    [147] Fischbach J, Freyberger M. Quantum optical reconstruction scheme using weak values[J]. Physical Review A, 86, 052110(2012).

    [148] Salvail J Z, Agnew M, Johnson A S et al. Full characterization of polarization states of light via direct measurement[J]. Nature Photonics, 7, 316-321(2013).

    [149] Malik M, Mirhosseini M, Lavery M P J et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector[J]. Nature Communications, 5, 3115(2014).

    [150] Chaturvedi S, Ercolessi E, Marmo G et al. Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems: a Dirac-inspired view[J]. Journal of Physics A, 39, 1405-1423(2006). http://www.ams.org/mathscinet-getitem?mr=2202811

    [151] Bamber C, Lundeen J S. Observing Dirac’s classical phase space analog to the quantum state[J]. Physical Review Letters, 112, 070405(2014). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.070405

    [152] Lundeen J S, Bamber C. Procedure for direct measurement of general quantum states using weak measurement[J]. Physical Review Letters, 108, 070402(2012). http://www.ncbi.nlm.nih.gov/pubmed/22401180

    [153] Mao Y L, Ma Z H, Jin R B et al. Error-disturbance trade-off in sequential quantum measurements[J]. Physical Review Letters, 122, 090404(2019).

    [154] di Lorenzo A. Quantum state tomography from a sequential measurement of two variables in a single setup[J]. Physical Review A, 88, 042114(2013). http://dx.doi.org/10.1103/physreva.88.042114

    [155] di Lorenzo A. Sequential measurement of conjugate variables as an alternative quantum state tomography[J]. Physical Review Letters, 110, 010404(2013).

    [156] Diósi L. Structural features of sequential weak measurements[J]. Physical Review A, 94, 010103(2016).

    [157] Shojaee E, Jackson C S, Riofrío C A et al. Optimal pure-state qubit tomography via sequential weak measurements[J]. Physical Review Letters, 121, 130404(2018). http://arxiv.org/abs/1805.01012v1

    [158] Chen J S, Hu M J, Hu X M et al. Experimental realization of sequential weak measurements of non-commuting Pauli observables[J]. Optics Express, 27, 6089-6097(2019).

    [159] Thekkadath G S, Giner L, Chalich Y et al. Direct measurement of the density matrix of a quantum system[J]. Physical Review Letters, 117, 120401(2016). http://www.ncbi.nlm.nih.gov/pubmed/27689255

    [160] Wu S J. State tomography via weak measurements[J]. Scientific Reports, 3, 1193(2013). http://www.nature.com/articles/srep01193

    [161] Ren C L, Wang Y, Du J F. Efficient direct measurement of arbitrary quantum systems via weak measurement[J]. Physical Review Applied, 12, 014045(2019). http://www.researchgate.net/publication/334755640_Efficient_Direct_Measurement_of_Arbitrary_Quantum_Systems_via_Weak_Measurement

    [162] Lundeen J S, Resch K J. Practical measurement of joint weak-values and their connection to the annihilation operator[J]. Physics Letters A, 334, 337-344(2005). http://www.sciencedirect.com/science/article/pii/S0375960104016342

    [163] Brodutch A, Vaidman L. Measurements of non local weak-values[J]. Journal of Physics: Conference Series, 174, 012004(2009).

    [164] Kedem Y, Vaidman L. Modularvalues and weak-values of quantum observables[J]. Physical Review Letters, 105, 230401(2010). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111957275.html

    [165] Pan W W, Xu X Y, Kedem Y et al. Direct measurement of a nonlocal entangled quantum state[J]. Physical Review Letters, 123, 150402(2019). http://www.ncbi.nlm.nih.gov/pubmed/31702297

    [166] Kim Y, Kim Y S, Lee S Y et al. Direct quantum process tomography via measuring sequential weak-values of incompatible observables[J]. Nature Communications, 9, 192(2018).

    [167] Xu L, Xu H C, Xu F X et al. Direct characterization of quantum measurement using weak-values[EB/OL]. (2020-05-21)[2021-04-01]. https://arxiv.org/abs/2005.10423

    [168] Brida G, Ciavarella L, Degiovanni I P et al. Ancilla-assisted calibration of a measuring apparatus[J]. Physical Review Letters, 108, 253601(2012). http://www.ncbi.nlm.nih.gov/pubmed/23004600

    [169] Zhang L J, Coldenstrodt-Ronge H B, Datta A et al. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector[J]. Nature Photonics, 6, 364-368(2012).

    [170] Zhang L J, Datta A, Coldenstrodt-Ronge H B et al. Recursive quantum detector tomography[J]. New Journal of Physics, 14, 115005(2012).

    [171] Lundeen J S, Feito A, Coldenstrodt-Ronge H et al. Tomography of quantum detectors[J]. Nature Physics, 5, 27-30(2009).

    [172] Barnett S M, Pegg D T, Jeffers J. Bayes’ theorem and quantum retrodiction[J]. Journal of Modern Optics, 47, 1779-1789(2000).

    [173] Pegg D T, Barnett S M, Jeffers J. Quantum retrodiction in open systems[J]. Physical Review A, 66, 022106(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000002000008000059000001&idtype=cvips&gifs=Yes

    [174] Pregnell K L, Pegg D T. Retrodictive quantum optical state engineering[J]. Journal of Modern Optics, 51, 1613-1626(2004). http://www120.secure.griffith.edu.au/rch/items/c330b6a3-16fb-3fe2-8c10-6352a3ba9636/1/

    [175] Amri T. Quantum behavior of measurement apparatus[EB/OL]. (2010-01-18)[2021-04-01]. https://arxiv.org/abs/1001.3032

    [176] Amri T, Laurat J, Fabre C. Characterizing quantum properties of a measurement apparatus: insights from the retrodictive approach[J]. Physical Review Letters, 106, 020502(2011). http://www.ncbi.nlm.nih.gov/pubmed/21405212

    [177] Maccone L, Rusconi C C. State estimation: a comparison between direct state measurement and tomography[J]. Physical Review A, 89, 022122(2014).

    [178] Zou P, Zhang Z M, Song W. Direct measurement of general quantum states using strong measurement[J]. Physical Review A, 91, 052109(2015). http://adsabs.harvard.edu/abs/2015PhRvA..91e2109Z

    [179] Vallone G, Dequal D. Strong measurements give a better direct measurement of the quantum wave function[J]. Physical Review Letters, 116, 040502(2016).

    [180] Zhang Y X, Wu S J, Chen Z B. Coupling-deformed pointer observables and weak-values[J]. Physical Review A, 93, 032128(2016).

    [181] Zhu X M, Zhang Y X, Wu S J. Direct state reconstruction with coupling-deformed pointer observables[J]. Physical Review A, 93, 062304(2016).

    [182] Denkmayr T, Geppert H, Lemmel H et al. Experimental demonstration of direct path state characterization by strongly measuring weak-values in a matter-wave interferometer[J]. Physical Review Letters, 118, 010402(2017).

    [183] Calderaro L, Foletto G, Dequal D et al. Direct reconstruction of the quantum density matrix by strong measurements[J]. Physical Review Letters, 121, 230501(2018). http://www.ncbi.nlm.nih.gov/pubmed/30576212

    [184] Zhu X M, Wei Q, Liu L X et al. Hybrid direct state tomography by weak-value[EB/OL]. (2019-09-05)[2021-04-01]. https://arxiv.org/abs/1909.02461

    [185] Zhang C R, Hu M J, Hou Z B et al. Direct measurement of the two-dimensional spatial quantum wave function via strong measurements[J]. Physical Review A, 101, 012119(2020).

    [186] Howland G A, Lum D J, Howell J C. Compressive wavefront sensing with weak-values[J]. Optics Express, 22, 18870-18880(2014).

    [187] Mirhosseini M, Magaña-Loaiza O S, Hashemi Rafsanjani S M et al. Compressive direct measurement of the quantum wave function[J]. Physical Review Letters, 113, 090402(2014).

    [188] Knarr S H, Lum D J, Schneeloch J et al. Compressive direct imaging of a billion-dimensional optical phase space[J]. Physical Review A, 98, 023854(2018).

    [189] Shi Z M, Mirhosseini M, Margiewicz J et al. Scan-free direct measurement of an extremely high-dimensional photonic state[J]. Optica, 2, 388-392(2015).

    [190] Ogawa K, Yasuhiko O, Kobayashi H et al. A framework for measuring weak-values without weak interactions and its diagrammatic representation[J]. New Journal of Physics, 21, 043013(2019).

    [191] Ogawa K, Okazaki T, Kobayashi H et al. Direct measurement of ultrafast temporal wavefunctions[EB/OL]. (2021-03-01)[2021-04-01]. https://arxiv.org/abs/2103.01020

    [192] Zhou Y Y, Zhao J P, Hay D et al. Direct tomography of high-dimensional density matrices for general quantum states[EB/OL]. (2021-02-02)[2021-04-01]. https://arxiv.org/abs/2102.01271

    [193] Yang M, Xiao Y, Liao Y W et al. Zonal reconstruction of photonic wavefunction via momentum weak measurement[J]. Laser & Photonics Reviews, 14, 1900251(2020).

    Liang Xu, Lijian Zhang. Progress in Weak-Value-Based Quantum Metrology and Tomography[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011004
    Download Citation