• Chinese Optics Letters
  • Vol. 19, Issue 7, 071301 (2021)
Hui Ma1, Haotian Yang1, Bo Tang2, Maoliang Wei1, Junying Li1, Jianghong Wu3、4, Peng Zhang2, Chunlei Sun3、4, Lan Li3、4, and Hongtao Lin1、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310007, China
  • 2Institute of Microelectronics, Chinese Academic Society, Beijing 100029, China
  • 3Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310007, China
  • 4Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310023, China
  • show less
    DOI: 10.3788/COL202119.071301 Cite this Article Set citation alerts
    Hui Ma, Haotian Yang, Bo Tang, Maoliang Wei, Junying Li, Jianghong Wu, Peng Zhang, Chunlei Sun, Lan Li, Hongtao Lin. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited][J]. Chinese Optics Letters, 2021, 19(7): 071301 Copy Citation Text show less
    References

    [1] H. Sakr, T. D. Bradley, Y. Hong, G. T. Jasion, J. R. Hayes, H. Kim, I. A. Davidson, E. N. Fokoua, Y. Chen, K. R. H. Bottrill, N. Taengnoi, P. Petropoulos, D. J. Richardson, F. Poletti. Ultrawide bandwidth hollow core fiber for interband short reach data transmission. Optical Fiber Communication Conference Postdeadline Papers 2019, Th4A.1(2019).

    [2] Z. Li, A. M. Heidt, J. M. Daniel, Y. Jung, S. U. Alam, D. J. Richardson. Thulium-doped fiber amplifier for optical communications at 2 µm. Opt. Express, 21, 9289(2013).

    [3] M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavik, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Gruner-Nielsen, B. Palsdottir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, D. J. Richardson. Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. Opt Express, 21, 28559(2013).

    [4] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photon., 6, 440(2012).

    [5] M. C. Estevez, M. Alvarez, L. M. Lechuga. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev., 6, 463(2012).

    [6] N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, M. R. Watts. Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers. Opt. Express, 26, 2220(2018).

    [7] R. Wang, S. Sprengel, A. Vasiliev, G. Boehm, J. Van Campenhout, G. Lepage, P. Verheyen, R. Baets, M.-C. Amann, G. Roelkens. Widely tunable 2.3 µm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photon. Res., 6, 858(2018).

    [8] W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, G. Z. Mashanovich. High-speed silicon modulators for the 2 µm wavelength band. Optica, 5, 1055(2018).

    [9] X. Wang, W. Shen, W. Li, Y. Liu, Y. Yao, J. Du, Q. Song, K. Xu. High-speed silicon photonic Mach–Zehnder modulator at 2 µm. Photon. Res., 9, 535(2021).

    [10] J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, A. P. Knights. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photon., 9, 393(2015).

    [11] E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournie, W. Bogaerts, R. Baets, G. Roelkens. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express, 21, 6101(2013).

    [12] S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photon., 4, 561(2010).

    [13] X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, W. M. J. Green. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photon., 6, 667(2012).

    [14] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R. T. Chen. Recent advances in silicon-based passive and active optical interconnects. Opt. Express, 23, 2487(2015).

    [15] N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, G. Roelkens. High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared. IEEE Photon. Technol. Lett., 24, 1536(2012).

    [16] J. Kang, Z. Cheng, W. Zhou, T. H. Xiao, K. L. Gopalakrisna, M. Takenaka, H. K. Tsang, K. Goda. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt. Lett., 42, 2094(2017).

    [17] J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, Q. Song. 2-µm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photon. Technol. Lett., 30, 471(2018).

    [18] H. Xie, Y. Liu, W. Sun, Y. Wang, K. Xu, J. Du, Z. He, Q. Song. Inversely designed 1 × 4 power splitter with arbitrary ratios at 2-µm spectral band. IEEE Photon. J., 10, 2700506(2018).

    [19] E. J. Stanton, N. Volet, J. E. Bowers. Silicon arrayed waveguide gratings at 2.0-µm wavelength characterized with an on-chip resonator. Opt. Lett., 43, 1135(2018).

    [20] M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. S. Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, H. Wang. Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 µm and 2 µm. Opt. Express, 25, 10893(2017).

    [21] S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, J. Wang. Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband. Photon. Res., 7, 1030(2019).

    [22] L. Zhang, L. Jie, M. Zhang, Y. Wang, Y. Xie, Y. Shi, D. Dai. Ultrahigh-Q silicon racetrack resonators. Photon. Res., 8, 684(2020).

    [23] H. Liu, H. Tam, P. K. A. Wai, E. Pun. Low-loss waveguide crossing using a multimode interference structure. Opt. Commun., 241, 99(2004).

    [24] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, M. Hochberg. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express, 21, 29374(2013).

    [25] M. Johnson, M. G. Thompson, D. Sahin. Low-loss, low-crosstalk waveguide crossing for scalable integrated silicon photonics applications. Opt. Express, 28, 12498(2020).

    [26] D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett., 24, 234(2012).

    [27] X. Tu, T. Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G. Q. Lo. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express, 21, 12776(2013).

    [28] N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, M. Li. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett., 14, 2741(2014).

    [29] Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt. Express, 18, 9071(2010).

    [30] Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, H. Ou. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Opt. Express, 19, 6462(2011).

    CLP Journals

    [1] Hongxiang Zhang, Changpei Liang, Jian Song, Chenzhong Fu, Xiaofei Zang, Lin Chen, Jingya Xie. Terahertz out-of-plane coupler based on compact spot-size converter[J]. Chinese Optics Letters, 2022, 20(2): 021301

    [2] Junbo Zhu, Haiyang Huang, Yingxuan Zhao, Yang Li, Zhen Sheng, Fuwan Gan. Efficient silicon integrated four-mode edge coupler for few-mode fiber coupling[J]. Chinese Optics Letters, 2022, 20(1): 011302

    Data from CrossRef

    [1] Ye Luo, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li, Renjie Tang, Zequn Chen, Kathleen A. Richardson, Hongtao Lin, Lan Li. Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics. Photonics, 9, 94(2022).

    Hui Ma, Haotian Yang, Bo Tang, Maoliang Wei, Junying Li, Jianghong Wu, Peng Zhang, Chunlei Sun, Lan Li, Hongtao Lin. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited][J]. Chinese Optics Letters, 2021, 19(7): 071301
    Download Citation