• Journal of Semiconductors
  • Vol. 40, Issue 1, 012805 (2019)
Jianjun Shi, Xiaochuan Xia, Qasim Abbas, Jun Liu, Heqiu Zhang, Yang Liu, and Hongwei Liang
Author Affiliations
  • School of Microelectronics, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.1088/1674-4926/40/1/012805 Cite this Article
    Jianjun Shi, Xiaochuan Xia, Qasim Abbas, Jun Liu, Heqiu Zhang, Yang Liu, Hongwei Liang. Current transport mechanism of Mg/Au ohmic contacts to lightly doped n-type β-Ga2O3[J]. Journal of Semiconductors, 2019, 40(1): 012805 Copy Citation Text show less
    References

    [1]

    [2] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [3] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [4] K Irmscher, Z Galazka, M Pietsch et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 110, 063720(2011).

    [5] Z Galazka, R Uecker, K Irmscher et al. Czochralski growth and characterization of beta-Ga2O3 single crystals. Cryst Res Technol, 45, 1229(2010).

    [6] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [7] N Ueda, H Hosono, R Waseda et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 70, 3561(1997).

    [8] A Kuramata, K Koshi, S Watanabe et al. High-quality beta-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A(2016).

    [9] H. Aida, K. Nishiguchi, H. Takeda et al. Growth of beta-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 47, 8506(2008).

    [10] W Mu, Z Jia, Y Yin et al. High quality crystal growth and anisotropic physical characterization of beta-Ga2O3 single crystals grown by EFG method. J Alloys Compnds, 714, 453(2017).

    [11] K Sasaki, A Kuramata, T Masui et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 5, 035502(2012).

    [12] E G Víllora, K Shimamura, Y Yoshikawa et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett, 92, 202120(2008).

    [13] K Sasaki, M Higashiwaki, A Kuramata et al. Si-ion implantation doping in beta-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl Phys Express, 6, 086502(2013).

    [14] P H Carey, J Yang, F Ren et al. Ohmic contacts on n-type beta- Ga2O3 using AZO/Ti/Au. AIP Adv, 7, 095313(2017).

    [15] P H Carey, Y Jiancheng, R Fan et al. Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers. J Vac Sci Technol B, 35, 061201(2017).

    [16] T V Blank, Y A Goldberg, E A Posse. Flow of the current along metallic shunts in ohmic contacts to wide-gap III–V semiconductors. Semiconductors, 43, 1164(2009).

    [17] T Oyamada, H Sasabe, C Adachi. Formation of MgAu alloy cathode by photolithography and its application to organic light-emitting diodes and organic field effect transistors. Electr Eng Jpn, 152, 37-42(2005).

    [18] H Arai, H Nakanotani, K Morimoto et al. Magnesium-gold binary alloy for organic light-emitting diodes with high corrosion resistance. J Vac Sci Technol B, 34, 040607(2016).

    [19] R Suzuki, S Nakagomi, Y Kokubun et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 94, 222102(2009).

    [20] S Knight, A Mock, R Korlacki et al. Electron effective mass in Sn-doped monoclinic single crystal beta-gallium oxide determined by mid-infrared optical Hall effect. Appl Phys Lett, 112, 012103(2018).

    Jianjun Shi, Xiaochuan Xia, Qasim Abbas, Jun Liu, Heqiu Zhang, Yang Liu, Hongwei Liang. Current transport mechanism of Mg/Au ohmic contacts to lightly doped n-type β-Ga2O3[J]. Journal of Semiconductors, 2019, 40(1): 012805
    Download Citation