• Journal of Semiconductors
  • Vol. 41, Issue 6, 062403 (2020)
Yaqian Qian1, Shushan Qiao1、2, and Rongqiang Yang1
Author Affiliations
  • 1University of Chinese Academy of Science, Beijing 100049, China
  • 2Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • show less
    DOI: 10.1088/1674-4926/41/6/062403 Cite this Article
    Yaqian Qian, Shushan Qiao, Rongqiang Yang. Variation tolerance for high-speed negative capacitance FinFET SRAM bit cell[J]. Journal of Semiconductors, 2020, 41(6): 062403 Copy Citation Text show less

    Abstract

    Negative capacitance FinFET (NC-FinFET) has a promising developmental prospect due to its superior performance in SS < 60 mV/dec (subthreshold swing), especially in SRAM. Noise margin is an important metric to evaluate the performance for SRAM, together with static leakage, read speed, etc. In this paper, we study the effects of the variation of ferroelectric material (thickness, polarization), FinFET critical physical parameters (fin number, channel length) and some ambient factors (working temperature, supply voltage) on the performance of NC-FinFET SRAM within the reasonable fluctuation tolerance range. The SRAM bit cell is analyzed with a basic 6T structure. The impact of fin number and channel length for NC-FinFET SRAM is different from that of conventional FinFETs. Additionally, the ferroelectric material and some other factors are assessed in detail.
    $ {V_{\rm{fe}}} = 2{\alpha _{\rm{fe}}}{t_{\rm{fe}}}{Q_{\rm{fe}}} + 4{\beta _{\rm{fe}}}{t_{\rm{fe}}}Q_{\rm{fe}}^3 + 6{\gamma _{\rm{fe}}}{t_{\rm{fe}}}Q_{\rm{fe}}^5 + {\rho _{\rm{fe}}}{t_{\rm{fe}}}\frac{{\rm{d}{Q_{\rm g}}}}{{\rm{d}t}}, $ (1)

    View in Article

    $ {{{C}}_{\rm{fe}} = \dfrac{1}{{2{\alpha _{\rm{fe}}}{t_{\rm{fe}}} + 12{\beta _{\rm{fe}}}{t_{\rm{fe}}}Q_{\rm{fe}}^2 + 30{\gamma _{\rm{fe}}}{t_{\rm{fe}}}Q_{\rm{fe}}^4}}}. $ (2)

    View in Article

    $ \begin{array}{l} {{{I}}_{\rm{standby}}} = {I_{\rm{sub({PU})}}} + {I_{\rm{sub({PD})}}} + {I_{\rm{sub({PG})}}}\\ \quad\quad \quad \quad \; +\; {I_{\rm{gate({PU})}}} + {I_{\rm{gate({PD})}}} + {I_{\rm{gate({PG})}}}\\ \quad\quad \quad \quad \; +\; {I_{\rm{junc({PU})}}} + {I_{\rm{junc({PD})}}}\ + 3{I_{\rm{junc({PG})}}}. \end{array} $ (3)

    View in Article

    $\begin{array}{l}\\ \rm{SNM}_{6{\rm{T}}} = V_{\rm T} - \dfrac{1}{{K + 1}} \\ \times\left[ \dfrac{{V_{\rm{DD}}} - \dfrac{{2r + 1}}{{r + 1}}{V_{\rm{T}}}}{{1 + \dfrac{r}{{K\left( {r + 1} \right)}}}} -\dfrac{{V_{\rm{DD}}} - 2{V_{\rm{T}}}}{1 + K\dfrac{r}{q} + \sqrt {\dfrac{r}{q}\left( {1 + 2k + \dfrac{r}{q}{k^2}} \right)} } \right], \end{array}$ (4)

    View in Article

    $ {{r}} = {\rm{ratio}} = \frac{{{\beta _{\rm d}}}}{{{\beta _{\rm a}}}}, $ (5)

    View in Article

    $ {{q}} = \frac{{{\beta _{\rm p}}}}{{{\beta _{\rm a}}}}, $ (6)

    View in Article

    $ k = \frac{r}{r + 1} \left( \sqrt {\frac{r + 1}{r + 1 - \dfrac{{v_{{\rm s}}^2}}{{{v_{\rm r}}^2}}}} - 1 \right), $ (7)

    View in Article

    $ {v_{\rm s}} = {V_{{\rm{DD}}}} - {V_{\rm T}}, $ (8)

    View in Article

    $ {{{V}}_{\rm r}} = {v_{\rm s}} - \frac{{r{V_{\rm T}}}}{{r + 1}}. $ (9)

    View in Article

    $ {\rm{SN}}{{\rm{M}}_{6{\rm{T}}}} = {V_{\rm T}} - \frac{{0.8\left( {3k + 2} \right) - 2{V_{\rm T}}\left( {2k + 1} \right)}}{{4\left( {k + 1} \right)\left( {2 + k} \right)}}, $ (10)

    View in Article

    $ {{k}} = \frac{1}{2}\sqrt {\dfrac{2}{{2 - {{\left( {\dfrac{{0.8 - {V_{\rm T}}}}{{0.8 - \dfrac{3}{2}{V_{\rm T}}}}} \right)}^2}}}} - 1. $ (11)

    View in Article

    Yaqian Qian, Shushan Qiao, Rongqiang Yang. Variation tolerance for high-speed negative capacitance FinFET SRAM bit cell[J]. Journal of Semiconductors, 2020, 41(6): 062403
    Download Citation