• Laser & Optoelectronics Progress
  • Vol. 57, Issue 3, 030002 (2020)
Haojian Xing, Zenghe Yin, Jie Zhang*, and Yong Zhu
Author Affiliations
  • Key Laboratory for Optoelectronic Technology & System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3788/LOP57.030002 Cite this Article Set citation alerts
    Haojian Xing, Zenghe Yin, Jie Zhang, Yong Zhu. Quantitative Analysis of Surface-Enhanced Raman Scattering Based on Internal Standard Method[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030002 Copy Citation Text show less
    References

    [1] Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [2] Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 1, 16021(2016).

    [3] Pitarke J M, Silkin V M, Chulkov E V et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 70, 1-87(2007).

    [4] Jensen L, Aikens C M, Schatz G C. Electronic structure methods for studying surface-enhanced Raman scattering[J]. Chemical Society Reviews, 37, 1061-1073(2008).

    [5] Persson B N J, Zhao K, Zhang Z Y. Chemical contribution to surface-enhanced Raman scattering[J]. Physical Review Letters, 96, 207401(2006).

    [6] Zong C, Xu M X, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).

    [7] Zhao C, Li R, Yang H N et al. Measurement of platelet-derived growth factor-BB in urine samples based on surface-enhanced Raman spectroscopy[J]. Chinese Journal of Lasers, 44, 0811002(2017).

    [8] Freeman L M, Pang L, Fainman Y. Self-reference and random sampling approach for label-free identification of DNA composition using plasmonic nanomaterials[J]. Scientific Reports, 8, 7398(2018).

    [9] Sharma B, Frontiera R R, Henry A I et al. SERS: materials, applications, and the future[J]. Materials Today, 15, 16-25(2012).

    [10] Shi X F, Zhang X M, Yan X et al. Detection of polycyclic aromatic hydrocarbons (PAHs) in water based on three-dimensional surface-enhanced Raman scattering substrates[J]. Acta Optica Sinica, 38, 0724001(2018).

    [11] Li Y S, Church J S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials[J]. Journal of Food and Drug Analysis, 22, 29-48(2014).

    [12] Li M, Cushing S K, Wu N Q. Plasmon-enhanced optical sensors: a review[J]. The Analyst, 140, 386-406(2015).

    [13] Ma H K, Zhang X, Zhong S L et al. Detection of antibiotics based on hyphenated technique of electrostatic-preconcentration and surface-enhanced-Raman-spectroscopy[J]. Chinese Journal of Lasers, 45, 0207028(2018).

    [14] Lu S H, Wang Z M, Tian F. Application of illegal drugs detection based on surface enhanced Raman spectroscopy[J]. Laser & Optoelectronics Progress, 55, 030004(2018).

    [15] Geiman I, Leona M, Lombardi J R. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks[J]. Journal of Forensic Sciences, 54, 947-952(2009).

    [16] Berger A G, White I M. Therapeutic drug monitoring of flucytosine in serum using a SERS-active membrane system[J]. Proceedings of SPIE, 10081, 1008104(2017).

    [17] Li J F, Anema J R, Wandlowski T et al. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications[J]. Chemical Society Reviews, 44, 8399-8409(2015).

    [18] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. The Journal of Physical Chemistry B, 106, 9463-9483(2002).

    [19] Yoshida K, Itoh T, Tamaru H et al. Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures[J]. Physical Review B, 81, 115406(2010).

    [20] Xu H X. Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy[J]. Applied Physics Letters, 85, 5980-5982(2004).

    [21] Fang Y, Seong N H, Dlott D D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering[J]. Science, 321, 388-392(2008).

    [22] Le Ru E C, Etchegoin P G. Single-molecule surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 63, 65-87(2012).

    [23] Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective[J]. Journal of Raman Spectroscopy, 36, 485-496(2005).

    [24] Yamamoto Y S, Ozaki Y, Itoh T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21, 81-104(2014).

    [25] Szlag V M, Rodriguez R S, He J Y et al. Molecular affinity agents for intrinsic surface-enhanced Raman scattering (SERS) sensors[J]. ACS Applied Materials & Interfaces, 10, 31825-31844(2018).

    [26] Yin Z H. Carbon nanotubes/graphene/metal nanoparticles with self calibration for enhanced Raman scattering[D]. Chongqing: Chongqing University(2019).

    [27] Bell S E, Sirimuthu N M. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 37, 1012-1024(2008).

    [28] Su Y D, Han H L, Cai Q et al. Polymer adsorption on graphite and CVD graphene surfaces studied by surface-specific vibrational spectroscopy[J]. Nano Letters, 15, 6501-6505(2015).

    [29] Lazar P, Karlicky F, Jurecka P et al. Adsorption of small organic molecules on graphene[J]. Journal of the American Chemical Society, 135, 6372-6377(2013).

    [30] Tian H H, Zhang N, Tong L M et al. In situ quantitative graphene-based surface-enhanced Raman spectroscopy[J]. Small Methods, 1, 1700126(2017).

    [31] Singh D K, Iyer P K, Giri P K. Role of molecular interactions and structural defects in the efficient fluorescence quenching by carbon nanotubes[J]. Carbon, 50, 4495-4505(2012).

    [32] Patze S, Huebner U, Weber K et al. TopUp SERS substrates with integrated internal standard[J]. Materials, 11, 325(2018).

    [33] Weatherston J D, Worstell N C, Wu H J. Quantitative surface-enhanced Raman spectroscopy for kinetic analysis of aldol condensation using Ag-Au core-shell nanocubes[J]. The Analyst, 141, 6051-6060(2016).

    [34] Li J F, Huang Y F, Ding Y et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 464, 392-395(2010).

    [35] Zhang J, Yin Z H, Zhang X L et al. Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard[J]. Optics Express, 26, 23534-23539(2018).

    [36] Tian Z Q, Ren B, Li J F et al[J]. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy Chemical Communications (Cambridge, England), 2007, 3514-3534.

    [37] Velleman L, Scarabelli L, Sikdar D et al. Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation[J]. Faraday Discussions, 205, 67-83(2017).

    [38] Gong T C, Luo Y F, Zhao C W et al. Highly reproducible and stable surface-enhanced Raman scattering substrates of graphene-Ag nanohole arrays fabricated by sub-diffraction plasmonic lithography[J]. OSA Continuum, 2, 582-594(2019).

    [39] Yan B, Boriskina S V, Reinhard B M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing[J]. The Journal of Physical Chemistry C, 115, 24437-24453(2011).

    [40] Greeneltch N G, Blaber M G, Henry A I et al. Immobilized nanorod assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates[J]. Analytical Chemistry, 85, 2297-2303(2013).

    [41] Li J F, Tian X D, Li S B et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature Protocols, 8, 52-65(2013).

    [42] Bian X, Song Z L, Qian Y et al. Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy[J]. Scientific Reports, 4, 6093(2014).

    [43] Lai X F, Zou Y X, Wang S S et al. Modulating the morphology of gold graphitic nanocapsules for plasmon resonance-enhanced multimodal imaging[J]. Analytical Chemistry, 88, 5385-5391(2016).

    [44] Qian X M, Peng X H, Ansari D O et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 26, 83-90(2008).

    [45] Chen L, Yu Z, Lee Y et al. Quantitative evaluation of proteins with bicinchoninic acid (BCA): resonance Raman and surface-enhanced resonance Raman scattering-based methods[J]. The Analyst, 137, 5834-5838(2012).

    [46] Dong N, Hu Y J, Yang K et al. Development of aptamer-modified SERS nanosensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity[J]. Sensors and Actuators B: Chemical, 228, 85-93(2016).

    [47] He S J, Liu K K, Su S et al. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection[J]. Analytical Chemistry, 84, 4622-4627(2012).

    [48] Wu L, Wang Z Y, Zhang Y Z et al. In situ probing of cell-cell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs[J]. Nano Research, 10, 584-594(2017).

    [49] Xia T H, Chen Z P, Chen Y et al. Improving the quantitative accuracy of surface-enhanced Raman spectroscopy by the combination of microfluidics with a multiplicative effects model[J]. Analytical Methods, 6, 2363-2370(2014).

    [50] Chen Y, Chen Z P, Long S Y et al. Generalized ratiometric indicator based surface-enhanced Raman spectroscopy for the detection of Cd 2+ in environmental water samples[J]. Analytical Chemistry, 86, 12236-12242(2014).

    [51] Chen Y, Chen Z P, Jin J W et al. Quantitative determination of ametryn in river water using surface-enhanced Raman spectroscopy coupled with an advanced chemometric model[J]. Chemometrics and Intelligent Laboratory Systems, 142, 166-171(2015).

    [52] Zhang D M, Xie Y, Deb S K et al. Isotope edited internal standard method for quantitative surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 77, 3563-3569(2005).

    [53] Perera P N, Deb S K, Jo Davisson V et al. Multiplexed concentration quantification using isotopic surface-enhanced resonance Raman scattering[J]. Journal of Raman Spectroscopy, 41, 752-757(2010).

    [54] Subaihi A, Xu Y, Muhamadali H et al. Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling[J]. Analytical Methods, 9, 6636-6644(2017).

    [55] Shen W, Lin X, Jiang C Y et al. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards[J]. Angewandte Chemie (International Ed. in English), 54, 7308-7312(2015).

    [56] Wu S R, Tian X D, Liu S Y et al. Surface-enhanced Raman spectroscopy solution and solid substrates with built-in calibration for quantitative applications[J]. Journal of Raman Spectroscopy, 49, 659-667(2018).

    [57] Zhang X Q, Li S X, Chen Z P et al. Quantitative SERS analysis based on multiple-internal-standard embedded core-shell nanoparticles and spectral shape deformation quantitative theory[J]. Chemometrics and Intelligent Laboratory Systems, 177, 47-54(2018).

    [58] Xu W G, Ling X, Xiao J Q et al. Surface enhanced Raman spectroscopy on a flat graphene surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 9281-9286(2012).

    [59] Zou Y X, Chen L, Song Z L et al. Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis[J]. Nano Research, 9, 1418-1425(2016).

    [60] Zhang J, Yin Z H, Gong T C et al. Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering[J]. Optics Express, 26, 22432-22439(2018).

    [61] Peksa V, Jahn M, Štolcova L et al. Quantitative SERS analysis of azorubine (E 122) in sweet drinks[J]. Analytical chemistry, 87, 2840-2844(2015).

    [62] Wei H R. McCarthy A, Song J, et al. Quantitative SERS by hot spot normalization-surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance[J]. Faraday Discussions, 205, 491-504(2017).

    [63] Ryu Y, Kang G M, Lee C W et al. Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer[J]. RSC Advances, 5, 76085-76091(2015).

    [64] Kleinman S L, Frontiera R R, Henry A I et al. Creating, characterizing, and controlling chemistry with SERS hot spots[J]. Physical Chemistry Chemical Physics, 15, 21-36(2013).

    Haojian Xing, Zenghe Yin, Jie Zhang, Yong Zhu. Quantitative Analysis of Surface-Enhanced Raman Scattering Based on Internal Standard Method[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030002
    Download Citation