• Laser & Optoelectronics Progress
  • Vol. 57, Issue 3, 030002 (2020)
Haojian Xing, Zenghe Yin, Jie Zhang*, and Yong Zhu
Author Affiliations
  • Key Laboratory for Optoelectronic Technology & System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3788/LOP57.030002 Cite this Article Set citation alerts
    Haojian Xing, Zenghe Yin, Jie Zhang, Yong Zhu. Quantitative Analysis of Surface-Enhanced Raman Scattering Based on Internal Standard Method[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030002 Copy Citation Text show less
    Problems in SERS quantitative detection
    Fig. 1. Problems in SERS quantitative detection
    Schematic diagram of internal standard method
    Fig. 2. Schematic diagram of internal standard method
    Typical metallic nanostructures[19,36-40]
    Fig. 3. Typical metallic nanostructures[19,36-40]
    Shell core structure improves the performance of SERS substrate: (a)Shell acts as a protective layer to avoid the effects of chemical effects[17]; (b) shell acts as a particle functionalization or molecular adsorption platform[36]; (c) application of carbon nanomaterials wrapped metal nanoparticles in biological science[42-<xref ref-type="bibr" rid="b43"
    Fig. 4. Shell core structure improves the performance of SERS substrate: (a)Shell acts as a protective layer to avoid the effects of chemical effects[17]; (b) shell acts as a particle functionalization or molecular adsorption platform[36]; (c) application of carbon nanomaterials wrapped metal nanoparticles in biological science[42-
    Three internal standard addition modes. (a) A: External addition mode, including add internal standards directly or add labeling molecules; (b) B: core-internal standard-shell modes; (c) C: self-calibrating substrate
    Fig. 5. Three internal standard addition modes. (a) A: External addition mode, including add internal standards directly or add labeling molecules; (b) B: core-internal standard-shell modes; (c) C: self-calibrating substrate
    ModeStructureISPerformance (LOD or EF)Reference
    External additionSilver ColloidIEIS:isotopicR6G2×10-10 mol/L (R6G)10-9 mol/L (R6G)Zhang et al[52]Perera et al[53]
    AuNPILC:Trp-d5 or13C10-7 mol/L(Trp and caffeine)Subaihi et al[54]
    AuNPTMT2.9×10-9 mol/L (Cd2+)Chen et al[50]
    Microfluidics withAg nanocolloidsRhBp-thiocresol5×10-7 mol/L (MG)5×10-8 mol/L (MG)Xia et al[49]
    Ag@AuNCsNTPEF:104, aldolcondensation reactionof acetone and MTBHWeatherston et al[33]
    Ag filmsPhosphatebackboneadenine and cytosineFreeman et al[8]
    Core-molecule-shellAu@CA+Mpy@AgNPsMpy5×10-10 mol/L (PDI)Shen et al[55]
    CISS NCpMBA+pATP3×10-11 mol/L (R6G)Wu et al[56]
    Au@2-MB+PATP@Ag2-MBPATP2-MB+PATP3×10-7 mol/L (Phosmet)Zhang et al[57]
    Self-calibratingsubstrateFONTopUp@AgSiSi0.5 mg/L (E 122)2×10-8 mol/L (SMX)Peksa et al[61]Patze et al[32]
    AGNsGraphiticEF>106 (RhB)Zou et al[59]
    G-SERSGE10-8 mol/L (CV and RhB)Tian et al[30]
    CNT/AgNPsCNT10-9 mol/L (R6G)Zhang et al[60]
    GE/AgNHsGE10-15 mol/L (R6G)Zhang et al[35]
    Note:Abbreviation:limits of detection (LOD), isotope edited internal standard (IEIS), isotopically labelled compound (ILC), enhancement factor(EF); 4-(methylthio) benzaldehyde(MTBH);Substrate:colloidal Ag-Au core-shell nanocubes (Ag@AuNCs), sulfamethoxazole (SMX), “film over nanospheres” (FON), Au@Ag nanocuboids (NCs),core-internal standard-shell (CISS);Material:Rhodamine6G (R6G), Tryptophan (Trp), malachite green (MG), 4-Nitrothiophenol (NTP), trithiocyanuric acid (TMT), 2-Mercaptobenzimidazole (2-MB),4-aminothiophenol (pATP), cysteamine (CA), 4-mercaptopyridine (Mpy), crystal violet (CV), 1,4-phenylene diisocyanide (PDI), basic red 9 (BR9) rhodamine B (RhB), food and drink colorant azorubine (E 122), 4-mercaptobenzoic acid (pMBA), p-Aminothiophenol(PATP).
    Table 1. Structure, internal standard and performance in three internal standard modes
    Haojian Xing, Zenghe Yin, Jie Zhang, Yong Zhu. Quantitative Analysis of Surface-Enhanced Raman Scattering Based on Internal Standard Method[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030002
    Download Citation