• Photonics Research
  • Vol. 7, Issue 7, B36 (2019)
Jan Ruschel1、*, Johannes Glaab1, Batoul Beidoun1, Neysha Lobo Ploch1, Jens Rass1, Tim Kolbe1, Arne Knauer1, Markus Weyers1, Sven Einfeldt1, and Michael Kneissl1、2
Author Affiliations
  • 1Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
  • 2Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin, Germany
  • show less
    DOI: 10.1364/PRJ.7.000B36 Cite this Article Set citation alerts
    Jan Ruschel, Johannes Glaab, Batoul Beidoun, Neysha Lobo Ploch, Jens Rass, Tim Kolbe, Arne Knauer, Markus Weyers, Sven Einfeldt, Michael Kneissl. Current-induced degradation and lifetime prediction of 310  nm ultraviolet light-emitting diodes[J]. Photonics Research, 2019, 7(7): B36 Copy Citation Text show less
    References

    [1] A. Endruweit, M. S. Johnson, A. C. Long. Curing of composite components by ultraviolet radiation: a review. Polym. Compos., 27, 119-128(2006).

    [2] J. Krutmann, A. Morita. Mechanisms of ultraviolet (UV) B and UVA phototherapy. J. Invest. Dermatol. Symp. Proc., 4, 70-72(1999).

    [3] M. Schreiner, J. Martınez-Abaigar, J. Glaab, M. Jensen. UV‐B induced secondary plant metabolites. Opt. Photonik, 9, 34-37(2014).

    [4] J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl. Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature. J. Appl. Phys., 118, 094504(2015).

    [5] C. G. Moe, M. L. Reed, G. A. Garrett, A. V. Sampath, T. Alexander, H. Shen, M. Wraback, Y. Bilenko, M. Shatalov, J. Yang, W. Sun, J. Deng, R. Gaska. Current-induced degradation of high performance deep ultraviolet light emitting diodes. Appl. Phys. Lett., 96, 213512(2010).

    [6] M. Meneghini, D. Barbisan, L. Rodighiero, G. Meneghesso, E. Zanoni. Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes. Appl. Phys. Lett., 97, 143506(2010).

    [7] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng. Solid-state lighting: failure analysis of white LEDs. J. Cryst. Growth, 268, 449-456(2004).

    [8] L. Liu, M. Ling, J. Yang, W. Xiong, W. Jia, G. Wang. Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure. J. Appl. Phys., 111, 093110(2012).

    [9] X. Yang, B. Sun, Z. Wang, C. Qian, Y. Ren, D. Yang, Q. Feng. An alternative lifetime model for white light emitting diodes under thermal-electrical stresses. Materials, 11, 817(2018).

    [10] J. Rass, T. Kolbe, N. Lobo Ploch, T. Wernicke, F. Mehnke, Ch. Kuhn, J. Enslin, M. Guttmann, Ch. Reich, A. Mogilatenko, J. Glaab, Ch. Stölmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, M. Kneissl. High-power UV-B LEDs with long lifetime. Proc. SPIE, 9363, 93631K(2015).

    [11] M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, M. Kneissl. Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces. Semicond. Sci. Technol., 28, 125015(2013).

    [12] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett., 110, 177406(2013).

    [13] W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M. Shur, R. Gaska. Efficiency droop in 245–247  nm AlGaN light-emitting diodes with continuous wave 2  mW output power. Appl. Phys. Lett., 96, 061102(2010).

    [14] Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, M. Asif Khan. Optical power degradation mechanisms in AlGaN-based 280  nm deep ultraviolet light-emitting diodes on sapphire. Appl. Phys. Lett., 88, 121106(2006).

    [15] J. Ruschel, J. Glaab, M. Brendel, J. Rass, C. Stölmacker, N. Lobo-Ploch, T. Kolbe, T. Wernicke, F. Mehnke, J. Enslin, S. Einfeldt, M. Weyers, M. Kneissl. Localization of current-induced degradation effects in (InAlGa)N-based UV-B LEDs. J. Appl. Phys., 124, 084504(2018).

    [16] A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, T. Mukai. High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol., 29, 084005(2014).

    [17] . Projecting Long Term Lumen Maintenance of LED Light Sources(2011).

    [18] F. Wang, T. Chu. Lifetime predictions of LED-based light bars by accelerated degradation test. Microelectron. Reliab., 52, 1332-1336(2012).

    [19] L. Wang, J. Jin, C. Mi, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, H. Li. A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes. Materials, 10, 1233(2017).

    [20] E. Kioupakis, Q. Yan, D. Steiauf, C. G. Van de Walle. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. New J. Phys., 15, 125006(2013).

    [21] H. Nykänen, S. Suihkonen, L. Kilanski, M. Sopanen, F. Tuomisto. Low energy electron beam induced vacancy activation in GaN. Appl. Phys. Lett., 100, 122105(2012).

    [22] S. F. Chichibu, A. Uedono, K. Kojima, H. Ikeda, K. Fujito, S. Takashima, M. Edo, K. Ueno, S. Ishibashi. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J. Appl. Phys., 123, 161413(2018).

    [23] C. De Santi, M. Meneghini, G. Meneghesso, E. Zanoni. Degradation of InGaN laser diodes caused by temperature- and current-driven diffusion processes. Microelectron. Reliab., 64, 623-626(2016).

    [24] K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, G. Meneghesso. Analysis of diffusion-related gradual degradation of InGaN-based laser diodes. IEEE J. Quantum Electron., 48, 1169-1176(2012).

    [25] R. da Silva, G. I. Wirth. Logarithmic behavior of the degradation dynamics of metal-oxide–semiconductor devices. J. Stat. Mech. Theory Exp., 2010, P04025(2010).

    [26] M. Brox, A. Schwerin, Q. Wang, W. Weber. A model for the time- and bias-dependence of p-MOSFET degradation. IEEE Trans. Electron Devices, 41, 1184-1196(1994).

    [27] Q. Wang, M. Brox, W. H. Krautschneider, W. Weber. Explanation and model for the logarithmic time dependence of p-MOSFET degradation. IEEE Electron Device Lett., 12, 218-220(1991).

    [28] T. Grasser, B. Kaczer. Evidence that two tightly coupled mechanisms are responsible for negative bias temperature instability in oxynitride MOSFETs. IEEE Trans. Electron Devices, 56, 1056-1062(2009).

    [29] J. Hu, L. Yang, L. Kim, M. W. Shin. The ageing mechanism of high-power InGaN/GaN light-emitting diodes under electrical stresses. Semicond. Sci. Technol., 22, 1249-1252(2007).

    [30] F. Manyakhin, A. Kovalev, A. E. Yunovich. Aging mechanisms of InGaN/AlGaN/GaN light-emitting diodes operating at high currents. MRS Internet J. Nitride Semicond. Res., 3, e53(1998).

    [31] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov. Enhanced tunneling in GaN/InGaN multi-quantum-well heterojunction diodes after short-term injection annealing. J. Appl. Phys., 91, 5203-5207(2002).

    [32] S. M. Myers, A. F. Wright. Theoretical description of H behavior in GaN p-n junctions. J. Appl. Phys., 90, 5612-5622(2001).

    CLP Journals

    [1] Xiaohang Li, Russell D. Dupuis, Tim Wernicke. Semiconductor UV photonics: feature introduction[J]. Photonics Research, 2019, 7(12): SUVP1

    [2] F. Piva, C. De Santi, M. Deki, M. Kushimoto, H. Amano, H. Tomozawa, N. Shibata, G. Meneghesso, E. Zanoni, M. Meneghini. Modeling the degradation mechanisms of AlGaN-based UV-C LEDs: from injection efficiency to mid-gap state generation[J]. Photonics Research, 2020, 8(11): 1786

    Jan Ruschel, Johannes Glaab, Batoul Beidoun, Neysha Lobo Ploch, Jens Rass, Tim Kolbe, Arne Knauer, Markus Weyers, Sven Einfeldt, Michael Kneissl. Current-induced degradation and lifetime prediction of 310  nm ultraviolet light-emitting diodes[J]. Photonics Research, 2019, 7(7): B36
    Download Citation