• Photonics Research
  • Vol. 10, Issue 10, 2374 (2022)
Zhuang Ma1, Xiaoyan Zhou1、2、3、*, and Lin Zhang1、2、4、*
Author Affiliations
  • 1Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Peng Cheng Laboratory, Shenzhen 518038, China
  • 3e-mail:
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.465966 Cite this Article Set citation alerts
    Zhuang Ma, Xiaoyan Zhou, Lin Zhang. Phase regimes of parity-time-symmetric coupled-ring systems at exceptional points[J]. Photonics Research, 2022, 10(10): 2374 Copy Citation Text show less
    References

    [1] M. A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, 42-44(2019).

    [2] M. Parto, Y. Liu, B. Bahari, M. Khajavikhan, D. N. Christodoulides. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics, 10, 403-423(2021).

    [3] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [4] H. Zhao, L. Feng. Parity-time symmetric photonics. Natl. Sci. Rev., 5, 183-199(2018).

    [5] S. K. Ozdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [6] J. Wiersig. Review of exceptional point-based sensors. Photon. Res., 8, 1457-1467(2020).

    [7] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [8] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [9] M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, M. Khajavikhan. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature, 576, 70-74(2019).

    [10] Y. H. Lai, Y. K. Lu, M. G. Suh, Z. Q. Yuan, K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576, 65-69(2019).

    [11] J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, M. Khajavikhan. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett., 42, 1556-1559(2017).

    [12] M. J. Grant, M. J. F. Digonnet. Enhanced rotation sensing and exceptional points in a parity-time-symmetric coupled-ring gyroscope. Opt. Lett., 45, 6538-6541(2020).

    [13] D. D. Smith, H. Chang, L. Horstman, J.-C. Diels. Parity-time-symmetry-breaking gyroscopes: lasing without gain and subthreshold regimes. Opt. Express, 27, 34169-34191(2019).

    [14] M. J. Grant, M. J. F. Digonnet. Rotation sensitivity and shot-noise-limited detection in an exceptional-point coupled-ring gyroscope. Opt. Lett., 46, 2936-2939(2021).

    [15] L. Horstman, N. Hsu, J. Hendrie, D. Smith, J. C. Diels. Exceptional points and the ring laser gyroscope. Photon. Res., 8, 252-256(2020).

    [16] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 346, 975-978(2014).

    [17] L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [18] H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Single mode lasing in transversely multi-moded PT-symmetric microring resonators. Laser Photon. Rev., 10, 494-499(2016).

    [19] H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric coupled microring lasers operating around an exceptional point. Opt. Lett., 40, 4955-4958(2015).

    [20] W. L. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Z. Lu, L. A. Coldren, J. P. Yao. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun., 8, 15389(2017).

    [21] M. A. Miri, P. Likamwa, D. N. Christodoulides. Large area single-mode parity-time-symmetric laser amplifiers. Opt. Lett., 37, 764-766(2012).

    [22] J. H. Ren, Y. Liu, M. Parto, W. E. Hayenga, M. P. Hokmabadi, D. N. Christodoulides, M. Khajavikhan. Unidirectional light emission in PT-symmetric microring lasers. Opt. Express, 26, 27153-27160(2018).

    [23] S. Longhi, L. Feng. Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited]. Photon. Res., 5, B1-B6(2017).

    [24] B. Peng, S. K. Ozdemir, F. C. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [25] W. J. Chen, D. Leykam, Y. D. Chong, L. Yang. Nonreciprocity in synthetic photonic materials with nonlinearity. MRS Bull., 43, 443-451(2018).

    [26] L. Chang, X. S. Jiang, S. Y. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [27] W. J. Chen, J. Zhang, B. Peng, S. K. Ozdemir, X. D. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited]. Photon. Res., 6, 23-30(2018).

    [28] W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [29] H. Hodaei, A. U. Hassan, D. N. Christodoulides, M. Khajavikhan. PT-symmetric micro-resonators: high sensitivity at exceptional points. Conference on Lasers and Electro-Optics (CLEO), FTh3D.2(2017).

    [30] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [31] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [32] C. Q. Wang, Z. T. Fu, L. Yang. Non-Hermitian Physics and Engineering in Silicon Photonics, 323-364(2021).

    [33] X. Y. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang. Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency. Opt. Express, 21, 20179-20186(2013).

    [34] K. Totsuka, N. Kobayashi, M. Tomita. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett., 98, 213904(2007).

    [35] X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, D. H. Zhang. Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems. New J. Phys., 15, 103033(2013).

    [36] J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [37] J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron., 40, 726-730(2004).

    [38] B. E. Little, S. T. Chu. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998-1005(1997).

    [39] Z. Wang, Z. W. Fang, Z. X. Liu, W. Chu, Y. Zhou, J. H. Zhang, R. B. Wu, M. Wang, T. Lu, Y. Cheng. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380-383(2021).

    [40] Z. X. Chen, Q. Xu, K. Zhang, W. H. Wong, D. L. Zhang, E. Y. B. Pun, C. Wang. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161-1164(2021).

    [41] J. Ronn, W. W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Saynatjoki, H. Lipsanen, L. Vivien, E. Cassan, Z. P. Sun. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun., 10, 432(2019).

    [42] J. Ronn, J. H. Zhang, W. W. Zhang, Z. R. Tu, A. Matikainen, X. Leroux, E. Duran-Valdeiglesias, N. Vulliet, F. Boeuf, C. Alonso-Ramos, H. Lipsanen, L. Vivien, Z. P. Sun, E. Cassan. Erbium-doped hybrid waveguide amplifiers with net optical gain on a fully industrial 300 mm silicon nitride photonic platform. Opt. Express, 28, 27919-27926(2020).

    [43] X. Liu, M. Kong, H. Feng. Transmission and dispersion of coupled double-ring resonators. J. Opt. Soc. Am. B, 29, 68-74(2012).

    [44] L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner. Embedded ring resonators for microphotonic applications. Opt. Lett., 33, 1978-1980(2008).

    [45] L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, A. E. Willner. Microring-based modulation and demodulation of DPSK signal. Opt. Express, 15, 11564-11569(2007).

    [46] L. Zhang, J. Y. Yang, Y. Li, R. G. Beausoleil, A. E. Willner. Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings. Opt. Lett., 33, 1428-1430(2008).

    [47] X. Xue, B. Yang, M. Wang, S. Li, X. Zheng, B. Zhou. The Nyquist soliton Kerr comb(2021).

    [48] M. D. Stenner, D. J. Gauthier, M. A. Neifeld. The speed of information in a ‘fast-light’ optical medium. Nature, 425, 695-698(2003).

    [49] C. Yu, T. Luo, L. Zhang, A. E. Willner. Data pulse distortion induced by a slow-light tunable delay line in optical fiber. Opt. Lett., 32, 20-22(2007).

    Zhuang Ma, Xiaoyan Zhou, Lin Zhang. Phase regimes of parity-time-symmetric coupled-ring systems at exceptional points[J]. Photonics Research, 2022, 10(10): 2374
    Download Citation