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The optical coupled resonant system consisting of an integrated resonator with gain and a resonator with loss
provides an excellent platform to create exceptional points (EPs) in non-Hermitian systems. Most previous studies
have focused on the striking intensity feature of EPs, but its phase response is seldom investigated. In this work,
we present a thorough study on the phase response of an EP system. Intriguingly, the phase response exhibits
distinct behavior depending on the ordering of the ring resonators: when the input light in a bus waveguide is
coupled directly or indirectly to the ring with a gain, the phase response is featured by nonmonotonic transition
and 2πmonotonic transition, respectively. We also prove that the newly identified phase features are theoretically
guaranteed. These phase responses produce unique group delays that have never been found in other coupled
resonant systems. The results deepen our understanding on EPs in non-Hermitian systems and are potentially
useful for practical applications exploiting phase features. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.465966

1. INTRODUCTION

In quantum mechanics, physical observables are represented by
Hermitian operators. In this regard, Hermitian systems must
exhibit real eigenvalues and orthogonal eigenstates. Compared
with Hermitian systems, non-Hermitian systems that have
interactions with the environment in the form of matter or en-
ergy exchange exhibit complex eigenvalues in general [1–6]. In
1998, Bender and Boettcher first proposed that non-Hermitian
systems can possess real spectra under the condition of parity-
time (PT) symmetry, i.e., the corresponding Hamiltonian must
commute with the PT operator [7]. Yet this condition alone
cannot guarantee a real eigenvalue, as the Hamiltonian can
undergo an abrupt phase transition and enter the so-called
PT-symmetry-breaking regime beyond certain points in the
parameter space, where both eigenvalues and eigenstates coa-
lesce, known as the exceptional points (EPs).

Ordinated from quantum mechanics, PT symmetry and
EPs in optical systems have drawn great research attention,
as this theory can be readily formulated with the quantum po-
tential replaced by optical index profiles [8], leading to a series
of applications, including optical gyroscopes [9–15], single-
mode lasers [16–21], unidirectional emission of lasing
[22,23], nonreciprocal optical transmission [24–26], and opti-
cal sensing [27–31]. Among various platforms, integrated
coupled microring resonators (CMRs) have been favored to

experimentally investigate rich EP physics due to their unique
advantages in scalability and flexibility to control optical param-
eters [32–35]. Recent works have shown that CMRs working
in the PT-symmetric regime can achieve greatly enhanced ro-
tation sensitivity [11–14], stable single-mode laser operation
[16–20], and nanoparticle sensing [27–30], exploiting the
extraordinary properties of intensity response around the EP.
Compared with the striking intensity feature, its counterpart,
the phase response, at EPs is seldom investigated, without
which one is precluded from a comprehensive understanding
of PT-symmetric systems. In practice, it is believed that the
phase response at EPs is equivalently important, because one
usually operates coupled resonant systems close to EP condi-
tions (which can hardly reach an EP) and thus have a certain
bandwidth around an EP frequency [36]. This means that a
spectral phase profile associated with EP or near-EP devices
needs to be identified and understood.

In this work, we present a detailed study of the phase re-
sponse at EPs in the PT-symmetric system based on CMRs.
The system is modeled with coupled mode theory (CMT)
and is classified into four coupling regimes according to
whether each single ring is overcoupled or undercoupled
[37]. The results show that the phase response is highly depen-
dent on the directionality of the light flow: when the input light
is first coupled into the ring with gain from the bus waveguide,
the peak-to-peak values of the phase spectra (ϕpp) that represent
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the maximum phase shift in a band are always less than π for
the four coupling regimes, although there is a difference in ϕpp;
on the other hand, when the ring with loss is directly coupled
with the input bus waveguide, ϕpp is always 2π regardless of the
coupling regimes of the system. We prove these conclusions
theoretically and briefly discuss the impact of fabrication errors
on the device for practical applications. The newly identified
phase responses produce unique group delays that have never
been found in other coupled resonant systems.

2. MODELING AND RESULTS

Figure 1(a) shows a schematic of typical PT-symmetric systems,
which consist of two coupled rings and a bus waveguide. We
name the ring directly coupled with the input bus waveguide
Ring 1, and the other one Ring 2. These rings are identical in
every respect except that one is with gain, while the other one is
with loss [11,12,24]. We note that most EP-related phenom-
ena have been studied in this configuration, but there is cer-
tainly another way to set up the system, as shown in Fig. 1(b).
We name these two configurations Case I and Case II, respec-
tively, according to whether the Ring 1 is amplified or not, as
shown in Figs. 1(a) and 1(b). In fact, the Case II is found to be
dramatically different from the Case I, as in the following.

For Case I, the fields evolve in time according to the coupled
mode equations as follows [11,12,24]:(

da1
dt � −iω1a1 − g1a1 � iμ2a2 � iμ1E1

da2
dt � −iω2a2 − g2a2 � iμ2a1

, (1)

where E1 is the electric field at the input port; νgj (j � 1, 2) is
the group velocity of the jth ring; Rj (j � 1, 2) is the radius of
the jth ring; aj (j � 1, 2) is the energy amplitude in the jth ring;
ωj (j � 1, 2) is the resonant angular frequency of the jth
ring; and gj (j � 1, 2) represents the gain (loss) in the jth ring,
respectively. The two rings have the same radius, i.e., R1 �
R2 � R, the same group velocity, i.e., νg1 � νg2 � νg , and
the same resonant angular frequency, i.e., ω1 � ω2 � ω0.
μ1 is the mutual coupling between the ring and the bus wave-
guide, which is related to the ring-waveguide power coefficient
κrb by μ1 � ffiffiffiffiffiffi

κrb
p

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νg1∕2πR1

p
, and μ2 is the mutual coupling

between the rings, which is related to the ring–ring power
coupling coefficient κrr by μ2 � ffiffiffiffiffi

κrr
p

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νg1∕2πR1

p
·ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νg2∕2πR2

p
[38].

The eigenvalues of the CMRs are given by [24]

ω − ω0 �
i�g1 � g2�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ22 −

�
g1 − g2

2

�
2

s
: (2)

When g1 � g2 � 0, this system is PT-symmetric.
Meanwhile, when μ2 � �g1 − g2�∕2, this system is at EPs with
degenerated eigenvalues. The electric field in the through port
is given by

E2 � E1 � iμ1a1: (3)

Solving Eq. (1) by letting da1, 2∕dt � iωa1, 2, we obtain the
transfer function at EPs for the system,

T I �
E2

E1

�
�ω − ω0�2 − i κrbνg2πR �ω − ω0� � κrb

ffiffiffiffi
κrr

p
ν2g

�2πR�2

�ω − ω0�2
: (4)

The phase response is given by

ϕI � arctan

�
−

2πR · κrbνg�ω − ω0�
�2πR�2�ω − ω0�2 � κrb

ffiffiffiffiffi
κrr

p
ν2g

�
: (5)

For Case II, the form of the coupled mode equations is the
same as in Case I, and the difference is that g1 < 0 and g2 > 0
in Case I, while g1 > 0 and g2 < 0 in Case II, depending on
which ring resonator (with gain or loss) is placed close to the
bus waveguide. Similarly, we obtain the transfer function and
the phase response at EPs as follows:

T II �
�ω − ω0�2 − i κrbνg2πR �ω − ω0� − κrb

ffiffiffiffi
κrr

p
ν2g

�2πR�2

�ω − ω0�2
, (6)

ϕII � arctan

�
2πR · κrbνg�ω − ω0�

−�2πR�2�ω − ω0�2 � κrb
ffiffiffiffiffi
κrr

p
ν2g

�
: (7)

It is important to note that, as long as μ2 � �g1 − g2�∕2
holds, both the configurations above are at EPs, but
Eqs. (4) and (6) clearly show that amplitude responses in
the Cases I and II are different. As a representative example, we
consider that the device comprises lithium niobate (LiNbO3)
waveguides, and the gain can be realized with, e.g., direct
erbium doping in the waveguide [39,40] or an erbium-doped
thin-film overlayer [41,42]. We set the radii of the CMRs
to be R � 100 μm and the waveguide cross section to be
3 μm × 150 nm (width × height), resulting in an effective re-
fractive index of 1.9 at a resonant wavelength of 1.55 μm,
as determined using a finite-element mode solver. With this
parameter setting, we conduct the analytical study.

From the discussion above, we note that there is a huge
amount of parameter combinations that allow the CMRs in
both configurations (Case I and Case II) to work at the EPs.
First, we divide these two PT-symmetric systems at EPs into
four coupling regimes (i.e., A, Rings 1 and 2 are both over-
coupled; B, Ring 1 is overcoupled, and Ring 2 is undercoupled;
C, Ring 1 is undercoupled, and Ring 2 is overcoupled; D,
Rings 1 and 2 are both undercoupled), according to the cou-
pling regime of a single ring. We assume τ is the amplitude
transmissivity of a round trip for the ring with loss, and

Fig. 1. (a) and (b) Schematics of the PT-symmetric systems in Case
I and Case II. (c) and (d) four phase responses of Case I and Case II.
ϕpp values in Case IB and Case IIB are labeled out as examples. (e) and
(f ) Amplitude responses of Case ID and Case IID. Detailed informa-
tion about A, B, C, D is in the main text.
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ffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
is round-trip loss. For κrb < 1 − τ2, the ring is said to

be undercoupling and for κrb > 1 − τ2, the ring is said to be
overcoupling [37]. For the ring with gain, to date there is
no clear definition of the coupling regimes. For the two rings
mentioned above, which are identical in every respect except
that one is with gain while the other is with loss, τ1 of the ring
with loss is exp�g1L1� < 1, and τ2 of the ring with gain is
exp�g2L2� > 1, where gj �j � 1, 2� represents the gain (or loss)
in the ring, and Lj represents the circumference of the ring.
According to the simulations, when τ1 · τ2 � 1, the amplitude
responses of the rings mentioned above are reciprocal, and the
phase responses are identical [43]. Thus, we can define the cou-
pling regimes of the ring with gain according to the character-
istics of the phase response of the ring with loss at different
coupling regimes, i.e., for κrb < 1 − �1∕τ�2, the ring is under-
coupling and for κrb > 1 − �1∕τ�2, the ring is overcoupling.

Then, for Case I, we select the coupling-coefficient combi-
nations in Table 1 for Case IA, Case IB, Case IC, and Case ID,
respectively. The phase profiles are as shown in Fig. 1(c). We
note that although ϕpp in the four cases is different, ϕpp is
always less than π. Similarly, we show the phase profiles in
Fig. 1(d) with the coupling–coefficient combinations in
Table 1 for Case IIA, Case IIB, Case IIC, and Case IID, re-
spectively. For Case II at EPs, ϕpp is always equal to 2π.
From Eqs. (4) and (6), at resonant frequencies, the amplitude
response at EPs rises to infinity rapidly for both Case I and Case
II. For frequencies far away from resonant frequencies, the am-
plitude response for Case I is slightly greater than unity, whereas
the amplitude response for Case II is slightly less than unity, as
shown in Figs. 1(e) and 1(f ). Since the amplitude responses are
similar for all the cases discussed, we only show the amplitude
responses for Case ID and Case IID.

To gain an overview of the phase response features at EPs,
the maps of ϕpp in the four coupling regimes by sweeping cou-
pling coefficients κrb and κrr that satisfy the EP conditions are
shown in Figs. 2(a) and 2(b) for Case I and Case II, respectively.

We confirm that ϕpp is always less than π, regardless of the
coupling regimes for Case I, and ϕpp is always equal to 2π
for all the configurations working at EPs for Case II.

3. THEORETICAL ANALYSIS

In this section, we provide a mathematical proof of the different
features of ϕpp presented above. Considering the periodicity of
the tangent function, it is not straightforward to analyze ϕpp

from Eq. (5) directly. Instead, we define ϕj � arctan�ψ j�,
where j � I or II for Case I and Case II, respectively.

A. Case I
For Case I, according to Eq. (5), ψ I is given by

ψ I � −
2πR · κrbνg�ω − ω0�

�2πR�2�ω − ω0�2 � κrb
ffiffiffiffiffi
κrr

p
ν2g

: (8)

To fully determine the shape of the ψ I curve, the derivative
of Eq. (8) is given as

dψ I

dω
�

2πRκrbνg
h
�2πR�2�ω − ω0�2 − κrb ffiffiffiffiffi

κrr
p

ν2g
i

h
�2πR�2�ω − ω0�2 � κrb

ffiffiffiffiffi
κrr

p
ν2g
i
2

: (9)

Both dψ I∕dω and ψ I are continuous, since there are no
poles in Eqs. (8) and (9). From Eq. (9), we note that dψ I∕dω
has two zero points at ω � ω0 � ω 0, where ω 0 is given
by ω 0 � νg ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κrb

ffiffiffiffiffi
κrr

pp
∕2πR. For ω < ω0 − ω

0 and
ω > ω0 � ω 0, ψ I increases with ω; for ω0 − ω

0 <
ω < ω0 � ω 0, ψ I decreases with ω. The spectra of dψ I∕dω
and ψ I are determined from Eqs. (8) and (9) and schematically
shown in Figs. 3(a) and 3(b). In fact, ψ I has the maximum
value, ψm, and the minimum value, −ψm, at ω � ω0 � ω 0,
respectively, where ψm � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κrb∕
ffiffiffiffiffi
κrr

pp
∕2. Since ϕI �

arctan�ψ I� is a monotonic function in ψ I ∈ �−∞, �∞�,
ϕI ∈ �arctan�−ψm�, arctan�ψm��, which is limited to
(−π∕2, π∕2). Thus, we confirm that ϕpp in Case I is always
less than π, although the value can be different, determined
by the geometric parameters and loss and gain.

Table 1. Coupling-Coefficient Combinations for Case I
and Case II

Case I Case II

A B C D A B C D

κrb 0.1 0.8 0.2 0.4 0.9 0.6 0.8 0.2
κrr 0.85 0.01 0.9 0.1 0.5 0.2 0.9 0.2

Fig. 2. ϕpp maps for different coupling-coefficient combinations
that fulfill the EP conditions for (a) Case I and (b) Case II. The four
coupling regimes of the coupled microrings, named A, B, C, and D,
are shown in different colors.

Fig. 3. (a) and (b) show dψ∕dω and ψ spectra in Case I. (c) and
(d) show dψ∕dω and ψ spectra in Case II.
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B. Case II
Similarly, according to Eq. (7), ψ II is given by

ψ II �
2πR · κrbνg�ω − ω0�

−�2πR�2�ω − ω0�2 � κrb
ffiffiffiffiffi
κrr

p
ν2g

: (10)

Taking the derivative of Eq. (10), we obtain

dψ II

dω
�

2πRκrbνg
h
�2πR�2�ω − ω0�2 � κrb

ffiffiffiffiffi
κrr

p
ν2g
i

h
�2πR�2�ω − ω0�2 − κrb ffiffiffiffiffi

κrr
p

ν2g
i
2

: (11)

From Eq. (11), we note that dψ II∕dω has no zeros but two
poles at ω � ω0 � ω 0, at which it approaches positive infinity.
At ω � ω0, dψ II∕dω � δ � 2πR∕� ffiffiffiffiffi

κrr
p

νg�, and thus the
spectra of dψ II∕dω are schematically shown in Fig. 3(c). Since
dψ II∕dω has two discontinuous points at ω � ω0 � ω 0, it can
be deduced that ψ II has two underivable points at these
frequencies. As ω approaches infinity, ψ II approaches zero.
As dψ II∕dω > 0 for all ω values, ψ II should always increase
with ω, and the spectra of ψ II are shown in Fig. 3(d), which
confirms that ψ II experiences two complete periods of the tan-
gent function ψ II � tan�ϕII�, where ϕII is limited to (−π, π).
Therefore, ϕpp in Case II is always equal to 2π for all coupling
regimes.

4. DISCUSSION

It is important to examine the impact of fabrication errors on
the EP features. From numerical modeling, we note that the
parameter variations caused by fabrication errors, such as gain
coefficients of one ring in the system, mainly affect the ampli-
tude response around EPs. From Eq. (2), we assume the gain of
a ring at EPs to be g th. When g < g th, the two eigenvalues have
two real parts, implying the amplitude response should exhibit
two resonances, i.e., the system enters the symmetry-unbroken
regime [24]. In practical applications of the parity-time-
symmetric coupled-ring systems, such as single-mode lasers,
sensors, and optical gyroscopes, it is necessary to maintain a
single-mode regime. In addition, we mainly focus on the phase
response in this work, and thus the phase shift of a single res-
onance peak, without mode splitting [44], is examined.
Therefore, to avoid mode splitting, we limit our discussion
to working regimes where g > g th.

The gain variations caused by fabrication errors lead to the
deviations of the parity-time-symmetric coupled-ring systems
from EP regimes and thus Eqs. (4)–(7) do not hold.
Nevertheless, the coupled mode equations still govern the
coupled resonant system well [24]. We can still obtain the out-
put response using Eq. (1). In fact, the changes of output re-
sponses of the coupled-ring systems caused by gain variations or
coupling-coefficient variations are equivalent, both of which
lead to the PT-symmetry-unbroken regime or PT-symmetry-
breaking regime. Taking, for instance, when the gain of the
ring increases by 1%, we obtain the Q factors from the ampli-
tude responses around EPs as functions of κrb and κrr for Case I
and Case II in Figs. 4(a) and 4(b), and Q � ω0∕Δω, where
Δω is the linewidth of the amplitude response and ω0 is
the resonance frequency. As expected, the Q factor is quite sen-
sitive to a small change in gain and quickly decreases to
104 − 105 level. In particular, it is noted that the Q factor is

more sensitive to κrr than to κrb for both Cases I and II. In
addition, we examine the phase profiles for the above four cou-
pling regimes in Case I and Case II and the amplitude responses
for the coupling coefficients combinations κrb � 0.4, κrr � 0.1
of Case ID and κrb � 0.2, κrr � 0.2 of Case IID mentioned
above in Table 1. Figures 4(c) and 4(d) show that the phase
responses are almost the same as at EPs. Figures 4(e) and 4(f )
show that the Q factors of the amplitude response drop sharply,
compared with the Q factors at EPs, with a minimum as low as
2 × 104. In essence, the system behaves as if it loses its dimen-
sionality near an EP because the vector space becomes severely
skewed [5]. When the gain increases by 1%, the real parts of the
eigenfrequencies coalesce, while the imaginary components lose
their degeneracy. Here, the two imaginary components re-
present different linewidths without frequency shift caused
by coupling loss [24]. Therefore, theQ factors of the amplitude
response drop sharply.

The sensitivity of the EP features to a small imperfection of
the parameter variation likely caused by device fabrication er-
rors emphasizes the importance of examining a coupled reso-
nant system operated around EPs. In other words, we consider
the EP features with a nonzero bandwidth for real applications,
over which one would see an in-band phase shift. Although it is
noted from above that the amplitude responses in the Cases I
and II are different, we believe that the in-band phase responses
and associated group delays in Cases I and II are of great interest
to the EP community. In fact, these phase responses produce
unique group delays that have never been found in other
coupled resonant systems [33,35]. This might enable new ap-
plications, such as novel phase/amplitude modulators [45,46],
new types of cavity solitons in mode-locked lasers [47], dy-
namic-range-extended sensors, optical delay lines [33], and
nonlinear actuators for neural networks, while providing
new theoretical insights.

The optical group delays in Case ID and Case IID as exam-
ples are shown in Figs. 5(a) and 5(b), in which the amplitude
responses are also plotted for reference. We note that the in-
band phase response near the resonance frequency in Fig. 4(c)
for Case ID corresponds to a negative group velocity, which can

Fig. 4. When the gain of Ring 1 in Case I and Ring 2 in Case II
increases by 1% compared with g th at EPs. (a) and (b) Calculated Q
factors for Case I and Case II; (c) and (d) four phase responses of Case I
and Case II; insets, magnification of Case ID and Case IID around the
resonant frequency; (e) and (f ) amplitude responses of Case ID and
Case IID. (c), (d), (e), and (f ) have the same coefficients combinations
as mentioned in Figs. 1(c) and 1(d).
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lead to fast light propagation [48]. Instead, the in-band phase
response causes a positive group delay and slow light in Case
IID. The influence of the newly identified group delay profiles
on signal quality of a real data channel needs to be further stud-
ied [49]. It is noted that Figs. 5(a) and 5(b) correspond to
Figs. 1(c) and 1(d), which show the phase responses and group
delay line shapes similar to those for undercoupled and over-
coupled single-ring resonators [37]. A physical understanding
of this can be the following. Let us consider a parameter setting
for a fair comparison, in which gain coefficients in Case I and
Case II are the same, and losses are also the same. In this way,
Case I and Case II have the same loss/gain properties as a whole.
Then, one can select a set of coupling coefficients, κrb and κrr, to
operate at EP conditions. This means that in Case II, since Ring
1 is with loss, κrb has to be large enough that a certain amount of
light can reach the resonator with gain after being lost in Ring 1,
i.e., relative to the same loss/gain property of the dual-ring sys-
tem, Case II requires a larger κrb than Case I and thus becomes
overcoupled. In contrast, Case I is undercoupled as a whole.

In fact, frequency detuning or fluctuation between two rings
is also a concern for the parity-time-symmetric coupled-ring
systems at EPs. One must avoid the frequency detuning or fluc-
tuation in practical experiments, as it would cause severe devi-
ations from EPs. In other words, it is necessary to maintain the
same resonant frequency of two rings. A thermoelectric cooler
(TEC) is used to tune the resonances of the resonators via the
thermo-optic effect [24].

5. CONCLUSION

We have presented a thorough study on the phase response at
EPs of the PT-symmetric system based on CMRs. It is found
that the phase response is highly dependent on the direction-
ality of the light flow. When the input light is coupled into the
ring with gain from the bus waveguide, ϕpp is always less than
π. When the input light is coupled into the ring with loss from
the bus waveguide, ϕpp is always exactly 2π. Meanwhile, we
prove these conclusions mathematically. These results not only
deepen our understanding of EPs in PT-symmetric systems but
also have practical meaning for many applications.

Acknowledgment. We acknowledge support by the
Advanced Integrated Optoelectronics Facility at the Tianjin
University.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented
in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

REFERENCES
1. M. A. Miri and A. Alu, “Exceptional points in optics and photonics,”

Science 363, 42–44 (2019).
2. M. Parto, Y. Liu, B. Bahari, M. Khajavikhan, and D. N. Christodoulides,

“Non-Hermitian and topological photonics: optics at an exceptional
point,” Nanophotonics 10, 403–423 (2021).

3. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S.
Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT
symmetry,” Nat. Phys. 14, 11–19 (2018).

4. H. Zhao and L. Feng, “Parity-time symmetric photonics,” Natl. Sci.
Rev. 5, 183–199 (2018).

5. S. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry
and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).

6. J. Wiersig, “Review of exceptional point-based sensors,” Photon. Res.
8, 1457–1467 (2020).

7. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian
Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–
5246 (1998).

8. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H.
Musslimani, “Theory of coupled optical PT-symmetric structures,”
Opt. Lett. 32, 2632–2634 (2007).

9. M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M.
Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced
Sagnac sensitivity,” Nature 576, 70–74 (2019).

10. Y. H. Lai, Y. K. Lu, M. G. Suh, Z. Q. Yuan, and K. Vahala, “Observation
of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69
(2019).

11. J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D.
Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale par-
ity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559
(2017).

12. M. J. Grant and M. J. F. Digonnet, “Enhanced rotation sensing and
exceptional points in a parity-time-symmetric coupled-ring gyro-
scope,” Opt. Lett. 45, 6538–6541 (2020).

13. D. D. Smith, H. Chang, L. Horstman, and J.-C. Diels, “Parity-time-sym-
metry-breaking gyroscopes: lasing without gain and subthreshold re-
gimes,” Opt. Express 27, 34169–34191 (2019).

14. M. J. Grant and M. J. F. Digonnet, “Rotation sensitivity and shot-noise-
limited detection in an exceptional-point coupled-ring gyroscope,”Opt.
Lett. 46, 2936–2939 (2021).

15. L. Horstman, N. Hsu, J. Hendrie, D. Smith, and J. C. Diels,
“Exceptional points and the ring laser gyroscope,” Photon. Res. 8,
252–256 (2020).

16. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M.
Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346,
975–978 (2014).

17. L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode
laser by parity-time symmetry breaking,” Science 346, 972–975
(2014).

18. H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N.
Christodoulides, and M. Khajavikhan, “Single mode lasing in trans-
versely multi-moded PT-symmetric microring resonators,” Laser
Photon. Rev. 10, 494–499 (2016).

19. H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N.
Christodoulides, and M. Khajavikhan, “Parity-time-symmetric coupled
microring lasers operating around an exceptional point,” Opt. Lett. 40,
4955–4958 (2015).

20. W. L. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Z. Lu,
L. A. Coldren, and J. P. Yao, “An integrated parity-time symmetric
wavelength-tunable single-mode microring laser,” Nat. Commun. 8,
15389 (2017).

Fig. 5. When the gain of Ring 1 in Case I and Ring 2 in Case II
increases by 1% compared with g th at EPs. (a) and (b) Group delay
versus frequency detuning responses for Case ID and Case IID. The
corresponding transmission profiles are marked as dotted lines.

2378 Vol. 10, No. 10 / October 2022 / Photonics Research Research Article

https://doi.org/10.1126/science.aar7709
https://doi.org/10.1515/nanoph-2020-0434
https://doi.org/10.1038/nphys4323
https://doi.org/10.1093/nsr/nwy011
https://doi.org/10.1093/nsr/nwy011
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1364/PRJ.396115
https://doi.org/10.1364/PRJ.396115
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1038/s41586-019-1780-4
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1364/OL.42.001556
https://doi.org/10.1364/OL.42.001556
https://doi.org/10.1364/OL.399985
https://doi.org/10.1364/OE.27.034169
https://doi.org/10.1364/OL.423700
https://doi.org/10.1364/OL.423700
https://doi.org/10.1364/PRJ.369521
https://doi.org/10.1364/PRJ.369521
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1002/lpor.201500292
https://doi.org/10.1002/lpor.201500292
https://doi.org/10.1364/OL.40.004955
https://doi.org/10.1364/OL.40.004955
https://doi.org/10.1038/ncomms15389
https://doi.org/10.1038/ncomms15389


21. M. A. Miri, P. Likamwa, and D. N. Christodoulides, “Large area single-
mode parity-time-symmetric laser amplifiers,” Opt. Lett. 37, 764–766
(2012).

22. J. H. Ren, Y. Liu, M. Parto, W. E. Hayenga, M. P. Hokmabadi, D. N.
Christodoulides, and M. Khajavikhan, “Unidirectional light emission in
PT-symmetric microring lasers,” Opt. Express 26, 27153–27160
(2018).

23. S. Longhi and L. Feng, “Unidirectional lasing in semiconductor microring
lasers at an exceptional point [Invited],” Photon. Res. 5, B1–B6 (2017).

24. B. Peng, S. K. Ozdemir, F. C. Lei, F. Monifi, M. Gianfreda, G. L. Long,
S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric
whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

25. W. J. Chen, D. Leykam, Y. D. Chong, and L. Yang, “Nonreciprocity in
synthetic photonic materials with nonlinearity,”MRS Bull. 43, 443–451
(2018).

26. L. Chang, X. S. Jiang, S. Y. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y.
Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable op-
tical isolation in active-passive-coupled microresonators,” Nat.
Photonics 8, 524–529 (2014).

27. W. J. Chen, J. Zhang, B. Peng, S. K. Ozdemir, X. D. Fan, and L. Yang,
“Parity-time-symmetric whispering-gallery mode nanoparticle sensor
[Invited],” Photon. Res. 6, A23–30 (2018).

28. W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang,
“Exceptional points enhance sensing in an optical microcavity,”
Nature 548, 192–196 (2017).

29. H. Hodaei, A. U. Hassan, D. N. Christodoulides, and M. Khajavikhan,
“PT-symmetric micro-resonators: high sensitivity at exceptional
points,” in Conference on Lasers and Electro-Optics (CLEO)
(2017), paper FTh3D.2.

30. H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy,
D. N. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at
higher-order exceptional points,” Nature 548, 187–191 (2017).

31. J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting
detection by using exceptional points: application to microcavity sen-
sors for single-particle detection,” Phys. Rev. Lett. 112, 203901
(2014).

32. C. Q. Wang, Z. T. Fu, and L. Yang, Non-Hermitian Physics and
Engineering in Silicon Photonics, Silicon Photonics IV: Innovative
Frontiers (Springer, 2021), pp. 323–364.

33. X. Y. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner,
and W. Pang, “Power enhancement and phase regimes in embedded
microring resonators in analogy with electromagnetically induced
transparency,” Opt. Express 21, 20179–20186 (2013).

34. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-res-
onator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).

35. X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H.
Zhang, “Phase characteristics of an electromagnetically induced

transparency analogue in coupled resonant systems,” New J.
Phys. 15, 103033 (2013).

36. J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer, G. M.
Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser op-
erating at an exceptional point,” Nat. Photonics 12, 479–484 (2018).

37. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J.
Jackson, “Optical transmission characteristics of fiber ring resona-
tors,” IEEE J. Quantum Electron. 40, 726–730 (2004).

38. B. E. Little and S. T. Chu, “Microring resonator channel dropping fil-
ters,” J. Lightwave Technol. 15, 998–1005 (1997).

39. Z. Wang, Z. W. Fang, Z. X. Liu, W. Chu, Y. Zhou, J. H. Zhang, R. B.
Wu, M. Wang, T. Lu, and Y. Cheng, “On-chip tunable microdisk laser
fabricated on Er3+-doped lithium niobate on insulator,” Opt. Lett. 46,
380–383 (2021).

40. Z. X. Chen, Q. Xu, K. Zhang, W. H. Wong, D. L. Zhang, E. Y. B. Pun,
and C. Wang, “Efficient erbium-doped thin-film lithium niobate wave-
guide amplifiers,” Opt. Lett. 46, 1161–1164 (2021).

41. J. Ronn, W. W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-
Ramos, A. Saynatjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. P.
Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot
waveguides,” Nat. Commun. 10, 432 (2019).

42. J. Ronn, J. H. Zhang, W.W. Zhang, Z. R. Tu, A. Matikainen, X. Leroux,
E. Duran-Valdeiglesias, N. Vulliet, F. Boeuf, C. Alonso-Ramos, H.
Lipsanen, L. Vivien, Z. P. Sun, and E. Cassan, “Erbium-doped hybrid
waveguide amplifiers with net optical gain on a fully industrial 300 mm
silicon nitride photonic platform,” Opt. Express 28, 27919–27926
(2020).

43. X. Liu, M. Kong, and H. Feng, “Transmission and dispersion of
coupled double-ring resonators,” J. Opt. Soc. Am. B 29, 68–74 (2012).

44. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner,
“Embedded ring resonators for microphotonic applications,” Opt. Lett.
33, 1978–1980 (2008).

45. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and
A. E. Willner, “Microring-based modulation and demodulation of
DPSK signal,” Opt. Express 15, 11564–11569 (2007).

46. L. Zhang, J. Y. Yang, Y. Li, R. G. Beausoleil, and A. E. Willner,
“Monolithic modulator and demodulator of differential quadrature
phase-shift keying signals based on silicon microrings,” Opt. Lett.
33, 1428–1430 (2008).

47. X. Xue, B. Yang, M. Wang, S. Li, X. Zheng, and B. Zhou, “The Nyquist
soliton Kerr comb,” arXiv:2105.00492 (2021).

48. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of
information in a ‘fast-light’ optical medium,” Nature 425, 695–698
(2003).

49. C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Data pulse distortion in-
duced by a slow-light tunable delay line in optical fiber,” Opt. Lett. 32,
20–22 (2007).

Research Article Vol. 10, No. 10 / October 2022 / Photonics Research 2379

https://doi.org/10.1364/OL.37.000764
https://doi.org/10.1364/OL.37.000764
https://doi.org/10.1364/OE.26.027153
https://doi.org/10.1364/OE.26.027153
https://doi.org/10.1364/PRJ.5.0000B1
https://doi.org/10.1038/nphys2927
https://doi.org/10.1557/mrs.2018.124
https://doi.org/10.1557/mrs.2018.124
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1364/PRJ.6.000A23
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23280
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1364/OE.21.020179
https://doi.org/10.1103/PhysRevLett.98.213904
https://doi.org/10.1088/1367-2630/15/10/103033
https://doi.org/10.1088/1367-2630/15/10/103033
https://doi.org/10.1038/s41566-018-0213-5
https://doi.org/10.1109/JQE.2004.828232
https://doi.org/10.1109/50.588673
https://doi.org/10.1364/OL.410608
https://doi.org/10.1364/OL.410608
https://doi.org/10.1364/OL.420250
https://doi.org/10.1038/s41467-019-08369-w
https://doi.org/10.1364/OE.399257
https://doi.org/10.1364/OE.399257
https://doi.org/10.1364/JOSAB.29.000068
https://doi.org/10.1364/OL.33.001978
https://doi.org/10.1364/OL.33.001978
https://doi.org/10.1364/OE.15.011564
https://doi.org/10.1364/OL.33.001428
https://doi.org/10.1364/OL.33.001428
https://doi.org/10.1038/nature02016
https://doi.org/10.1038/nature02016
https://doi.org/10.1364/OL.32.000020
https://doi.org/10.1364/OL.32.000020

	XML ID funding

