• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 1, 52 (2024)
Yu-Ran ZHEN1、2, Jie DENG1、*, Yong-Hao BU1、2, Xu DAI1、2, Yu YU1、2, Meng-Die SHI1、2, Ruo-Wen WANG1、2, Tao YE1、2, Gang CHEN1、2、**, and Jing ZHOU1、2、***
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.01.008 Cite this Article
    Yu-Ran ZHEN, Jie DENG, Yong-Hao BU, Xu DAI, Yu YU, Meng-Die SHI, Ruo-Wen WANG, Tao YE, Gang CHEN, Jing ZHOU. Recent advances in on-chip infrared polarization detection[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 52 Copy Citation Text show less
    References

    [1] J S Tyo, D L Goldstein, D B Chenault et al. Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 5453(2006).

    [2] L Li, W Han, L Pi et al. Emerging in‐plane anisotropic two‐dimensional materials. InfoMat, 1, 54-73(2019).

    [3] Y Wang, P Wu, Z Wang et al. Air‐Stable Low‐Symmetry Narrow‐Bandgap 2D Sulfide Niobium for Polarization Photodetection. Advanced Materials, 32, 2005037(2020).

    [4] M I Beddiar, X Zhang, B Liu et al. Ambipolar-To-Unipolar Conversion in Ultrathin 2D Semiconductors. Small Structures, 3, 2200125(2022).

    [5] M Buscema, D J Groenendijk, S I Blanter et al. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Letters, 14, 3347-3352(2014).

    [6] Y Liu, T Sun, W Ma et al. Highly responsive broadband black phosphorus photodetectors. Chinese Optics Letters, 16, 020002(2018).

    [7] D J Perello, S H Chae, S Song et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nature Communications, 6, 7809(2015).

    [8] N Mao, J Tang, L Xie et al. Optical Anisotropy of Black Phosphorus in the Visible Regime. Journal of the American Chemical Society, 138, 300-305(2016).

    [9] F W Han, C X Zhao, Y M Zhang. Photoelectric properties of monolayer black phosphorus in visible regime at room temperature. AIP Advances, 9, 055216(2019).

    [10] T Hong, B Chamlagain, W Lin et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 6, 8978-8983(2014).

    [11] X Chen, X Lu, B Deng et al. Widely tunable black phosphorus mid-infrared photodetector. Nature Communications, 8, 1672(2017).

    [12] T Akamatsu, T Ideue, L Zhou et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science, 372, 68-72(2021).

    [13] Y Deng, Z Luo, N J Conrad et al. Black Phosphorus–Monolayer MoS2 van der Waals Heterojunction p–n Diode. ACS Nano, 8, 8292-8299(2014).

    [14] P Chen, J Xiang, H Yu et al. Gate tunable MoS2–black phosphorus heterojunction devices. 2D Materials, 2, 034009(2015).

    [15] X Jiang, M Zhang, L Liu et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction. Nanophotonics, 9, 2487-2493(2020).

    [16] T Hu, R Zhang, J-P Li et al. Photodetectors based on two-dimensional MoS2 and its assembled heterostructures. Chip, 1, 100017(2022).

    [17] J Bullock, M Amani, J Cho et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 12, 601-607(2018).

    [18] A Rasmita, C Jiang, C Jiang et al. Tunable geometric photocurrent in van der Waals heterostructure. Optica, 7, 1204-1208(2020).

    [19] Y Chen, Y Wang, Z Wang et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 4, 357-363(2021).

    [20] P Wu, L Ye, L Tong et al. Van der Waals two-color infrared photodetector. Light: Science & Applications, 11, 6(2022).

    [21] C Chen, X Lu, B Deng et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Science Advances, 6, eaay6134(2020).

    [22] J Lai, X Liu, J Ma et al. Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2. Advanced Materials, 30, 1707152(2018).

    [23] J Ma, B Cheng, L Li et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nature Communications, 13, 1-7(2022).

    [24] R Wang, L Li, H Tian et al. Full telecomband covered half-wave meta-reflectarray for efficient circular polarization conversion. Optics Communications, 427, 469-476(2018).

    [25] J Zhou, J Deng, M Shi et al. Cavity coupled plasmonic resonator enhanced infrared detectors. Applied Physics Letters, 119, 160504(2021).

    [26] F Jiang, M Shi, J Zhou et al. Integrated Photonic Structure Enhanced Infrared Photodetectors. Advanced Photonics Research, 2, 2000187(2021).

    [27] W Chen, Z Zhao, C Wang et al. Linear polarization grating combining a circular polarization grating with a special cycloidal diffractive quarter waveplate. Optics Express, 27, 33378-33390(2019).

    [28] R Zhou, K Ullah, S Yang et al. Recent advances in graphene and black phosphorus nonlinear plasmonics. Nanophotonics, 9, 1695-1715(2020).

    [29] L Tong, X Huang, P Wang et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nature Communications, 11, 2308(2020).

    [30] W Deng, M Dai, C Wang et al. Switchable Unipolar-Barrier Van der Waals Heterostructures with Natural Anisotropy for Full Linear Polarimetry Detection. Advanced Materials, 34, 2203766(2022).

    [31] C Fang, J Li, B Zhou et al. Self-Powered Filterless On-Chip Full-Stokes Polarimeter. Nano Letters, 21, 6156-6162(2021).

    [32] C Ma, S Yuan, P Cheung et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature, 604, 266-272(2022).

    [33] S-Y Xu, Q Ma, H Shen et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nature Physics, 14, 900-906(2018).

    [34] G B Osterhoudt, L K Diebel, M J Gray et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nature Materials, 18, 471-475(2019).

    [35] C Zhang, X Wang, L Qiu. Circularly Polarized Photodetectors Based on Chiral Materials: A Review. Frontiers in Chemistry, 9, 711488(2021).

    [36] C Chen, L Gao, W Gao et al. Circularly polarized light detection using chiral hybrid perovskite. Nature Communications, 10, 1927(2019).

    [37] A Ishii, T Miyasaka. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Science Advances, 6, eabd3274(2020).

    [38] Z Liu, C Zhang, X Liu et al. Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection. Advanced Science, 8, 2102065(2021).

    [39] Y Cao, C Li, J Deng et al. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite. Nano Research, 15, 7492-7497(2022).

    [40] Q Li, Z Li, N Li et al. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity. Scientific Reports, 4, 6332(2015).

    [41] W Li, Z J Coppens, L V Besteiro et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications, 6, 8379(2015).

    [42] M Wang, R Salut, H Lu et al. Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas. Light: Science & Applications, 8, 76(2019).

    [43] Q Jiang, B Du, M Jiang et al. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2. Nanoscale, 12, 5906-5913(2020).

    [44] Y W Zhou, Z F Li, J Zhou et al. High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors. Scientific Reports, 8, 15070(2018).

    [45] Z Chu, J Zhou, X Dai et al. Circular Polarization Discrimination Enhanced by Anisotropic Media. Advanced Optical Materials, 8, 1901800(2020).

    [46] W Hu, Z Ye, L Liao et al. 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Letters, 39, 5184-5187(2014).

    [47] W D Hu, X S Chen, Z H Ye et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Applied Physics Letters, 99, 091101(2011).

    [48] B Chen, Z Ji, J Zhou et al. Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film. Nanoscale, 12, 11808-11817(2020).

    [49] S Guo, D Zhang, J Zhou et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities. Carbon, 170, 49-58(2020).

    [50] D Zhang, J Zhou, C Liu et al. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors. Journal of Applied Physics, 126, 074301(2019).

    [51] J Deng, Y Zheng, J Zhou et al. Absorption enhancement in all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors. Optics Express, 28, 16427(2020).

    [52] J Peng, B P Cumming, M Gu. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector. Optics Letters, 44, 2998(2019).

    [53] F Lu, J Lee, A Jiang et al. Thermopile detector of light ellipticity. Nature Communications, 7, 12994(2016).

    [54] M Thomaschewski, Y Yang, C Wolff et al. On-Chip Detection of Optical Spin–Orbit Interactions in Plasmonic Nanocircuits. Nano Letters, 19, 1166-1171(2019).

    [55] J Wei, Y Li, L Wang et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11, 6404(2020).

    [56] J Wei, C Xu, B Dong et al. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nature Photonics, 15, 614-621(2021).

    [57] J Wei, Y Chen, Y Li et al. Geometric filterless photodetectors for mid-infrared spin light. Nature Photonics, 17, 171-178(2022).

    [58] L Li, J Wang, L Kang et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene–Silicon Photodetector. ACS Nano, 14, 16634-16642(2020).

    [59] C Zhou, Y Xie, J Ren et al. Spin separation based on-chip optical polarimeter via inverse design. Nanophotonics, 11, 813-819(2022).

    [60] Y Xiong, Y Wang, R Zhu et al. Twisted black phosphorus-based van der Waals stacks for fiber-integrated polarimeters. Science Advances, 8, eabo0375(2022).

    [61] T Lei, C Zhou, D Wang et al. On-Chip High-Speed Coherent Optical Signal Detection Based on Photonic Spin-Hall Effect. Laser & Photonics Reviews, 16, 2100669(2022).

    [62] M Dai, C Wang, B Qiang et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nature Communications, 13, 4560(2022).

    Yu-Ran ZHEN, Jie DENG, Yong-Hao BU, Xu DAI, Yu YU, Meng-Die SHI, Ruo-Wen WANG, Tao YE, Gang CHEN, Jing ZHOU. Recent advances in on-chip infrared polarization detection[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 52
    Download Citation