• Photonics Research
  • Vol. 10, Issue 7, 1650 (2022)
Tianyu Zhang1、2, Xiaoqiuyan Zhang1、2, Zhuocheng Zhang1、2, Xingxing Xu1、2, Yueying Wang1、2, Zhaoyun Duan1、2, Yanyu Wei1、2, Yubin Gong1、2, Shenggang Liu1、2, Min Hu1、2, and Tao Zhao1、2、*
Author Affiliations
  • 1Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
  • show less
    DOI: 10.1364/PRJ.462603 Cite this Article Set citation alerts
    Tianyu Zhang, Xiaoqiuyan Zhang, Zhuocheng Zhang, Xingxing Xu, Yueying Wang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Shenggang Liu, Min Hu, Tao Zhao. Tunable optical topological transition of Cherenkov radiation[J]. Photonics Research, 2022, 10(7): 1650 Copy Citation Text show less
    References

    [1] F. J. García De Abajo. Optical excitations in electron microscopy. Rev. Mod. Phys., 82, 209(2010).

    [2] A. Polman, M. Kociak, F. J. García de Abajo. Electron-beam spectroscopy for nanophotonics. Nat. Mater., 18, 1158-1171(2019).

    [3] F. J. García De Abajo, V. Di Giulio. Optical excitations with electron beams: challenges and opportunities. ACS Photon., 8, 945-974(2021).

    [4] L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, M. Soljačić. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics, 10, 46-52(2016).

    [5] M. Shentcis, A. K. Budniak, X. Shi, R. Dahan, Y. Kurman, M. Kalina, H. Herzig Sheinfux, M. Blei, M. K. Svendsen, Y. Amouyal, S. Tongay, K. S. Thygesen, F. H. L. Koppens, E. Lifshitz, F. J. García de Abajo, L. J. Wong, I. Kaminer. Tunable free-electron X-ray radiation from van der Waals materials. Nat. Photonics, 14, 686-692(2020).

    [6] P. A. Cherenkov. Radiation from high-speed particles. Science, 131, 136-142(1960).

    [7] I. E. Tamm. General characteristics of Vavilov-Cherenkov radiation. Science, 131, 206-210(1960).

    [8] I. M. Frank. Optics of light sources moving in refractive media. Science, 131, 702-712(1960).

    [9] V. L. Ginzburg. Transition radiation and transition scattering. Phys. Scr., 1982, 182(1982).

    [10] I. Frank, I. Tamm. Radiation by uniformly moving sources (Vavilov–Cherenkov effect, transition radiation, and other phenomena). Physics-Uspekhi, 39, 973-982(1996).

    [11] S. J. Smith, E. M. Purcell. Visible light from localized surface charges moving across a grating. Phys. Rev., 92, 1069(1953).

    [12] Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, Y. Liu. Manipulating Cherenkov radiation and Smith–Purcell radiation by artificial structures. Adv. Opt. Mater., 7, 1801666(2019).

    [13] P. Cherenkov. Visible glow of pure liquids under the action of γ-radiation. Dokl. Akad. Nauk SSSR, 2, 451(1934).

    [14] P. A. Cherenkov. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev., 52, 378-379(1937).

    [15] I. E. Tamm, I. M. Frank. Coherent visible radiation of fast electrons passing through matter. Dokl. Akad. Nauk SSSR, 14, 107-112(1937).

    [16] M. Günay, Y. L. Chuang, M. E. Tasgin. Continuously-tunable Cherenkov-radiation-based detectors via plasmon index control. Nanophotonics, 9, 1479-1489(2020).

    [17] X. Lin, H. Hu, S. Easo, Y. Yang, Y. Shen, K. Yin, M. P. Blago, I. Kaminer, B. Zhang, H. Chen, J. Joannopoulos, M. Soljačić, Y. Luo. A Brewster route to Cherenkov detectors. Nat. Commun., 12, 5554(2021).

    [18] Y. Gong, Q. Zhou, M. Hu, Y. Zhang, X. Li, H. Gong, J. Wang, D. Liu, Y. Liu, Z. Duan, J. Feng. Some advances in theory and experiment of high-frequency vacuum electron devices in China. IEEE Trans. Plasma Sci., 47, 1971-1990(2019).

    [19] T. M. Shaffer, E. C. Pratt, J. Grimm. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol., 12, 106-117(2017).

    [20] S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, M. Hu. Surface polariton Cherenkov light radiation source. Phys. Rev. Lett., 109, 153902(2012).

    [21] M. Silveirinha. A low-energy Cherenkov glow. Nat. Photonics, 11, 269-271(2017).

    [22] F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, Y. Huang. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics, 11, 289-292(2017).

    [23] P. Shekhar, S. Pendharker, H. Sahasrabudhe, D. Vick, M. Malac, R. Rahman, Z. Jacob. Extreme ultraviolet plasmonics and Cherenkov radiation in silicon. Optica, 5, 1590-1596(2018).

    [24] A. A. Govyadinov, A. Konečná, A. Chuvilin, S. Vélez, I. Dolado, A. Y. Nikitin, S. Lopatin, F. Casanova, L. E. Hueso, J. Aizpurua, R. Hillenbrand. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun., 8, 95(2017).

    [25] T. Qu, F. Liu, Y. Lin, K. Cui, X. Feng, W. Zhang, Y. Huang. Cherenkov radiation generated in hexagonal boron nitride using extremely low-energy electrons. Nanophotonics, 9, 1491-1499(2020).

    [26] C. Maciel-Escudero, A. Konečná, R. Hillenbrand, J. Aizpurua. Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: hexagonal boron nitride. Phys. Rev. B, 102, 115431(2020).

    [27] C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos. Cerenkov radiation in photonic crystals. Science, 299, 368-371(2003).

    [28] S. Xi, H. Chen, T. Jiang, L. Ran, J. Huangfu, B. I. Wu, J. A. Kong, M. Chen. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett., 103, 194801(2009).

    [29] Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, Y. Gong. Observation of the reversed Cherenkov radiation. Nat. Commun., 8, 14901(2017).

    [30] S. Gong, M. Hu, Z. Wu, H. Pan, H. Wang, K. Zhang, R. Zhong, J. Zhou, T. Zhao, D. Liu, W. Wang, C. Zhang, S. Liu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Photon. Res., 7, 1154-1160(2019).

    [31] X. Zhang, M. Hu, Z. Zhang, Y. Wang, T. Zhang, X. Xu, T. Zhao, Z. Wu, R. Zhong, D. Liu, Y. Wei, Y. Gong, S. Liu. High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band. Carbon, 183, 225-231(2021).

    [32] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [33] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [34] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [35] R. Yu, R. Alaee, R. W. Boyd, F. J. G. De Abajo. Ultrafast topological engineering in metamaterials. Phys. Rev. Lett., 125, 037403(2020).

    [36] A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, D. N. Basov. Programmable hyperbolic polaritons in van der Waals semiconductors. Science, 371, 617-620(2021).

    [37] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 6, 749-758(2012).

    [38] G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, S. S. Sunku, B. Y. Jiang, J. Hone, C. R. Dean, M. M. Fogler, D. N. Basov. Fundamental limits to graphene plasmonics. Nature, 557, 530-533(2018).

    [39] F. H. L. Koppens, D. E. Chang, F. J. García De Abajo. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett., 11, 3370-3377(2011).

    [40] A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [41] Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, T. B. Norris. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun., 7, 10568(2016).

    [42] H. Lin, B. C. P. Sturmberg, K. Te Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, B. Jia. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [43] J. Benedicto, R. Pollès, C. Ciracì, E. Centeno, D. R. Smith, A. Moreau. Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers. J. Opt. Soc. Am. A, 32, 1581-1588(2015).

    [44] H. Hu, X. Lin, J. Zhang, D. Liu, P. Genevet, B. Zhang, Y. Luo. Nonlocality induced Cherenkov threshold. Laser Photon. Rev., 14, 2000149(2020).

    [45] R. Yu, Q. Guo, F. Xia, F. J. G. de Abajo. Photothermal engineering of graphene plasmons. Phys. Rev. Lett., 121, 057404(2018).

    [46] H. Hu, D. Gao, X. Lin, S. Hou, B. Zhang, Q. J. Wang, Y. Luo. Directing Cherenkov photons with spatial nonlocality. Nanophotonics, 9, 3435-3442(2020).

    [47] E. Galiffi, P. A. Huidobro, P. A. D. Gonçalves, N. A. Mortensen, J. B. Pendry. Probing graphene’s nonlocality with singular metasurfaces. Nanophotonics, 9, 309-316(2020).

    [48] S. Raza, S. I. Bozhevolnyi, M. Wubs, N. A. Mortensen. Nonlocal optical response in metallic nanostructures. J. Phys. Condens. Matter, 27, 183204(2015).

    [49] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, A. K. Geim. Dirac cones reshaped by interaction effects in suspended grapheme. Nat. Phys., 7, 701-704(2011).

    [50] C. Hwang, D. A. Siegel, S. K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, A. Lanzara. Fermi velocity engineering in graphene by substrate modification. Sci. Rep., 2, 590(2012).

    [51] D. A. Siegel, W. Regan, A. V. Fedorov, A. Zettl, A. Lanzara. Charge-carrier screening in single-layer grapheme. Phys. Rev. Lett., 110, 146802(2013).

    [52] T. Stauber, P. Parida, M. Trushin, M. V. Ulybyshev, D. L. Boyda, J. Schliemann. Fermi velocity renormalization and optical response. Phys. Rev. Lett., 118, 266801(2017).

    [53] O. Vafek, J. Kang. Hidden symmetry in twisted bilayer graphene with Coulomb interactions. Phys. Rev. Lett., 125, 257602(2020).

    [54] C. H. Park, F. Giustino, M. L. Cohen, S. G. Louie. Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction. Phys. Rev. Lett., 99, 086804(2007).

    [55] F. Escudero, J. S. Ardenghi. Fermi velocity reduction in graphene due to enhanced vacuum fluctuations. J. Phys. Condens. Matter, 33, 485502(2021).

    [56] J. Duan, G. Álvarez-Pérez, K. V. Voronin, I. Prieto, J. Taboada-Gutiérrez, V. S. Volkov, J. Martín-Sánchez, A. Y. Nikitin, P. Alonso-González. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci. Adv., 7, eabf2690(2021).

    [57] W. Wu, W. Wu, S. Chen, W. Xu, Z. Liu, R. Lou, L. Shen, H. Luo, H. Luo, S. Wen, X. Yin, X. Yin, X. Yin. Weak-value amplification for the optical signature of topological phase transitions. Photon. Res., 8, B47-B54(2020).

    [58] Y. Gelkop, F. Di Mei, S. Frishman, Y. Garcia, L. Falsi, G. Perepelitsa, C. Conti, E. DelRe, A. J. Agranat. Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions. Nat. Commun., 12, 7241(2021).

    [59] P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun., 7, 11809(2016).

    [60] R. Deshmukh, S. A. Biehs, E. Khwaja, T. Galfsky, G. S. Agarwal, V. M. Menon. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photonics, 5, 2737-2741(2018).

    [61] Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, D. Tang. Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep., 4, 5483(2014).

    [62] T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, T. J. Cui. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep., 6, 23186(2016).

    [63] J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, H. Zhang. THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. J. Mater. Chem. C, 6, 1291-1306(2018).

    [64] D. N. Basov, M. M. Fogler, F. J. García De Abajo. Polaritons in van der Waals materials. Science, 354, aag1992(2016).

    Tianyu Zhang, Xiaoqiuyan Zhang, Zhuocheng Zhang, Xingxing Xu, Yueying Wang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Shenggang Liu, Min Hu, Tao Zhao. Tunable optical topological transition of Cherenkov radiation[J]. Photonics Research, 2022, 10(7): 1650
    Download Citation