• Photonics Research
  • Vol. 5, Issue 6, 543 (2017)
Limei Qi* and Chang Liu
Author Affiliations
  • School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.1364/PRJ.5.000543 Cite this Article Set citation alerts
    Limei Qi, Chang Liu, "Complex band structures of 1D anisotropic graphene photonic crystal," Photonics Res. 5, 543 (2017) Copy Citation Text show less
    References

    [1] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature, 442, 282-286(2006).

    [2] D. Li, M. B. Mueller, S. Gilje, R. B. Kaner, G. G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3, 101-105(2008).

    [3] A. Khaleque, H. T. Hattori. Absorption enhancement in graphene photonic crystal structures. Appl. Opt., 55, 2936-2942(2016).

    [4] J. Liu, N. Liu, J. Li, X. Li, J. Huang. Enhanced absorption of graphene with one-dimensional photonic crystal. Appl. Phys. Lett., 101, 052104(2012).

    [5] P. Cao, X. Yang, S. Wang, Y. Huang, N. Wang, D. Deng, C. Liu. Ultrastrong graphene absorption induced by one-dimensional parity-time symmetric photonic crystal. IEEE Photon. J., 9, 1-9(2017).

    [6] M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, M. Scalora. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt. Lett., 38, 3550-3553(2013).

    [7] Y. Liu, X. Xie, L. Xie, Z. Yang, H. Yang. Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik, 127, 3945-3948(2016).

    [8] C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, F. Mesa. Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys. Rev. B, 85, 245407(2012).

    [9] O. L. Berman, R. Y. Kezerashvili. Graphene-based one-dimensional photonic crystal. J. Phys., 24, 015305(2012).

    [10] K. V. Sreekanth, S. Zeng, K. T. Yong, T. Yu. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B, 182, 424-428(2013).

    [11] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun., 3, 780(2012).

    [12] Y. V. Bludov, N. M. R. Peres, M. I. Vasilevskiy. Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt., 15, 114004(2013).

    [13] Y. Tang, Z. Zhu, J. Zhang, C. Guo, K. Liu, X. Yuan, S. Qin. A transmission-type electrically tunable polarizer based on graphene ribbons at terahertz wave band. Chin. Phys. Lett., 32, 025202(2015).

    [14] Z. Arefinia, A. Asgari. Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals for terahertz applications. Phys. E, 54, 34-39(2013).

    [15] J. Fu, W. Chen, B. Lv. Tunable defect mode realized by graphene-based photonic crystal. Phys. Lett. A, 380, 1793-1798(2016).

    [16] C. Qin, B. Wang, H. Huang, H. Long, K. Wang, P. Lu. Low-loss plasmonic supermodes in graphene multilayers. Opt. Express, 22, 25324-25332(2014).

    [17] Y. V. Bludov, N. M. R. Peres, G. Smirnov, M. I. Vasilevskiy. Scattering of surface plasmon polaritons in a graphene multilayer photonic crystal with inhomogeneous doping. Phys. Rev. B, 93, 245425(2016).

    [18] F. Wang, Z. Wang, C. Qin, B. Wang, H. Long, K. Wang, P. Lu. Asymmetric plasmonic supermodes in nonlinear graphene multilayers. Opt. Express, 25, 1234-1241(2017).

    [19] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton., 7, 073089(2013).

    [20] I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar. Novel hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B, 87, 075416(2013).

    [21] S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, A. V. Lavrinenko. From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers. Phys. Rev. B, 90, 155429(2014).

    [22] Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, D. Tang. Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep., 4, 5483(2014).

    [23] H. Hajian, H. Caglayan, E. Ozbay. Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials. J. Appl. Phys., 121, 033101(2017).

    [24] A. A. Sayem, M. M. Rahman, M. R. C. Mahdy, I. Jahangir, M. S. Rahman. Negative refraction with superior transmission in graphene-hexagonal boron nitride (hBN) multilayer hyper crystal. Sci. Rep., 6, 25442(2016).

    [25] H. Hajian, A. Soltani-Vala, M. Kalafi. Characteristics of band structure and surface plasmons supported by a one-dimensional graphene-dielectric photonic crystal. Opt. Commun., 292, 149-157(2013).

    [26] A. Madan, S. R. Entezar. Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys. B, 431, 1-5(2013).

    [27] H. Hajian, A. Soltani-Vala, M. Kalafi. Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal. J. Appl. Phys., 114, 033102(2013).

    [28] Y. Zhang, Z. Wu, Y. Cao, H. Zhang. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun., 338, 168-173(2015).

    [29] F. U. Y. Al-sheqefi, W. Belhadj. Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices Microstruct., 88, 127-138(2015).

    [30] S. A. El-Naggar. Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystals. Opt. Quantum Electron., 47, 1627-1636(2015).

    [31] Y. Fan, Z. Wei, H. Li, H. Chen, C. M. Soukoulis. Photonic band gap of a graphene-embedded quarter-wave stack. Phys. Rev. B, 88, 241403(2013).

    [32] Y. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, F. Nori. Terahertz transverse-electric-and transverse-magne-tic-polarized waves localized on graphene in photonic crystals. Phys. Rev. B, 90, 045415(2014).

    [33] L. Bian, P. Liu, G. Li, Z. Lu, C. Liu. Characterization for one-dimensional graphene-embedded photonic crystals at terahertz frequencies. Opt. Quantum Electron., 48, 436-450(2016).

    [34] B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express, 21, 17089-17096(2013).

    [35] I. Nefedov, L. Melnikov. Plasmonic terahertz amplification in graphene-based asymmetric hyperbolic metamaterial. Photonics, 2, 594-603(2015).

    [36] Y. Li, L. Qi, J. Yu, Z. Chen, Y. Yao, X. Liu. One-dimensional multiband terahertz graphene photonic crystal filters. Opt. Mater. Express, 7, 1228-1239(2017).

    [37] Z. Saleki, S. R. Entezar, A. Madani. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer. Appl. Opt., 56, 317-323(2017).

    [38] G. Ding, S. Liu, H. Zhang, X. Kong, H. Li, B. Li, S. Liu, H. Li. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial. Chin. Phys. B, 24, 118103(2015).

    [39] V. Kuzmiak, A. A. Maradudin. Photonic band structures of one-and two-dimensional periodic systems with metallic components in the presence of dissipation. Phys. Rev. B, 55, 7427-7444(1997).

    [40] Y. Wu, M. Qu, L. Jiao, Y. Liu, Z. Ghassemlooy. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns. AIP Adv., 6, 065308(2016).

    [41] G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, J. Yao. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photon. J., 8, 7800808(2016).

    [42] C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, A. P. Hibbins. Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes. Opt. Express, 18, 13309-13320(2010).

    [43] D. Soto-Puebla, M. Xiaoc, F. Ramos-Mendieta. Optical properties of a dielectric-metallic superlattice: the complex photonic bands. Phys. Lett. A, 326, 273-280(2004).

    [44] A. Sentenac, J. J. Greffet, F. Pincemin. Structure of the electromagnetic field in a slab of photonic crystal. J. Opt. Soc. Am. B, 14, 339-347(1997).

    [45] X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, Z. Zhu. Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals. Appl. Phys. Lett., 86, 091112(2005).

    [46] C. Wu, T. Yang, C. Li, P. Wu. Investigation of effective plasma frequencies in one-dimensional plasma photonic crystals. Prog. Electromagn. Res., 126, 521-538(2012).

    [47] X. He. Tunable terahertz graphene metamaterials. Carbon, 82, 229-237(2015).

    [48] A. Marini, F. J. García de. Graphene-based active random metamaterials for cavity-free lasing. Phys. Rev. Lett., 116, 217401(2016).

    [49] V. Kumar, A. Kumara, K. H. S. Singh, P. Kumar. Broadening of omni-directional reflection range by cascade 1D photonic crystal. Optoelectron. Adv. Mater., 5, 488-490(2011).

    [50] J. P. Pandey. Enlargement of omnidirectional reflection range using cascaded photonic crystals. Int. J. Pure Appl. Phys., 13, 167-173(2017).

    [51] Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. Chen, A. K. Azad. Independently tunable dual band perfect absorber based on graphene at mid-infrared frequencies. Sci. Rep., 5, 18463(2015).

    [52] D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals-Molding the Flow of Light(2008).

    [53] R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos. Nature of the photonic band gap: some insights from a field analysis. J. Opt. Soc. Am. B, 10, 328-332(1993).