[1] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature, 442, 282-286(2006).
[2] D. Li, M. B. Mueller, S. Gilje, R. B. Kaner, G. G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3, 101-105(2008).
[3] A. Khaleque, H. T. Hattori. Absorption enhancement in graphene photonic crystal structures. Appl. Opt., 55, 2936-2942(2016).
[4] J. Liu, N. Liu, J. Li, X. Li, J. Huang. Enhanced absorption of graphene with one-dimensional photonic crystal. Appl. Phys. Lett., 101, 052104(2012).
[5] P. Cao, X. Yang, S. Wang, Y. Huang, N. Wang, D. Deng, C. Liu. Ultrastrong graphene absorption induced by one-dimensional parity-time symmetric photonic crystal. IEEE Photon. J., 9, 1-9(2017).
[6] M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, M. Scalora. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt. Lett., 38, 3550-3553(2013).
[7] Y. Liu, X. Xie, L. Xie, Z. Yang, H. Yang. Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik, 127, 3945-3948(2016).
[8] C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, F. Mesa. Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys. Rev. B, 85, 245407(2012).
[9] O. L. Berman, R. Y. Kezerashvili. Graphene-based one-dimensional photonic crystal. J. Phys., 24, 015305(2012).
[10] K. V. Sreekanth, S. Zeng, K. T. Yong, T. Yu. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B, 182, 424-428(2013).
[11] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun., 3, 780(2012).
[12] Y. V. Bludov, N. M. R. Peres, M. I. Vasilevskiy. Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt., 15, 114004(2013).
[13] Y. Tang, Z. Zhu, J. Zhang, C. Guo, K. Liu, X. Yuan, S. Qin. A transmission-type electrically tunable polarizer based on graphene ribbons at terahertz wave band. Chin. Phys. Lett., 32, 025202(2015).
[14] Z. Arefinia, A. Asgari. Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals for terahertz applications. Phys. E, 54, 34-39(2013).
[15] J. Fu, W. Chen, B. Lv. Tunable defect mode realized by graphene-based photonic crystal. Phys. Lett. A, 380, 1793-1798(2016).
[16] C. Qin, B. Wang, H. Huang, H. Long, K. Wang, P. Lu. Low-loss plasmonic supermodes in graphene multilayers. Opt. Express, 22, 25324-25332(2014).
[17] Y. V. Bludov, N. M. R. Peres, G. Smirnov, M. I. Vasilevskiy. Scattering of surface plasmon polaritons in a graphene multilayer photonic crystal with inhomogeneous doping. Phys. Rev. B, 93, 245425(2016).
[18] F. Wang, Z. Wang, C. Qin, B. Wang, H. Long, K. Wang, P. Lu. Asymmetric plasmonic supermodes in nonlinear graphene multilayers. Opt. Express, 25, 1234-1241(2017).
[19] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton., 7, 073089(2013).
[20] I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar. Novel hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B, 87, 075416(2013).
[21] S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, A. V. Lavrinenko. From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers. Phys. Rev. B, 90, 155429(2014).
[22] Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, D. Tang. Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep., 4, 5483(2014).
[23] H. Hajian, H. Caglayan, E. Ozbay. Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials. J. Appl. Phys., 121, 033101(2017).
[24] A. A. Sayem, M. M. Rahman, M. R. C. Mahdy, I. Jahangir, M. S. Rahman. Negative refraction with superior transmission in graphene-hexagonal boron nitride (hBN) multilayer hyper crystal. Sci. Rep., 6, 25442(2016).
[25] H. Hajian, A. Soltani-Vala, M. Kalafi. Characteristics of band structure and surface plasmons supported by a one-dimensional graphene-dielectric photonic crystal. Opt. Commun., 292, 149-157(2013).
[26] A. Madan, S. R. Entezar. Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys. B, 431, 1-5(2013).
[27] H. Hajian, A. Soltani-Vala, M. Kalafi. Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal. J. Appl. Phys., 114, 033102(2013).
[28] Y. Zhang, Z. Wu, Y. Cao, H. Zhang. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun., 338, 168-173(2015).
[29] F. U. Y. Al-sheqefi, W. Belhadj. Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices Microstruct., 88, 127-138(2015).
[30] S. A. El-Naggar. Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystals. Opt. Quantum Electron., 47, 1627-1636(2015).
[31] Y. Fan, Z. Wei, H. Li, H. Chen, C. M. Soukoulis. Photonic band gap of a graphene-embedded quarter-wave stack. Phys. Rev. B, 88, 241403(2013).
[32] Y. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, F. Nori. Terahertz transverse-electric-and transverse-magne-tic-polarized waves localized on graphene in photonic crystals. Phys. Rev. B, 90, 045415(2014).
[33] L. Bian, P. Liu, G. Li, Z. Lu, C. Liu. Characterization for one-dimensional graphene-embedded photonic crystals at terahertz frequencies. Opt. Quantum Electron., 48, 436-450(2016).
[34] B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express, 21, 17089-17096(2013).
[35] I. Nefedov, L. Melnikov. Plasmonic terahertz amplification in graphene-based asymmetric hyperbolic metamaterial. Photonics, 2, 594-603(2015).
[36] Y. Li, L. Qi, J. Yu, Z. Chen, Y. Yao, X. Liu. One-dimensional multiband terahertz graphene photonic crystal filters. Opt. Mater. Express, 7, 1228-1239(2017).
[37] Z. Saleki, S. R. Entezar, A. Madani. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer. Appl. Opt., 56, 317-323(2017).
[38] G. Ding, S. Liu, H. Zhang, X. Kong, H. Li, B. Li, S. Liu, H. Li. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial. Chin. Phys. B, 24, 118103(2015).
[39] V. Kuzmiak, A. A. Maradudin. Photonic band structures of one-and two-dimensional periodic systems with metallic components in the presence of dissipation. Phys. Rev. B, 55, 7427-7444(1997).
[40] Y. Wu, M. Qu, L. Jiao, Y. Liu, Z. Ghassemlooy. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns. AIP Adv., 6, 065308(2016).
[41] G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, J. Yao. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photon. J., 8, 7800808(2016).
[42] C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, A. P. Hibbins. Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes. Opt. Express, 18, 13309-13320(2010).
[43] D. Soto-Puebla, M. Xiaoc, F. Ramos-Mendieta. Optical properties of a dielectric-metallic superlattice: the complex photonic bands. Phys. Lett. A, 326, 273-280(2004).
[44] A. Sentenac, J. J. Greffet, F. Pincemin. Structure of the electromagnetic field in a slab of photonic crystal. J. Opt. Soc. Am. B, 14, 339-347(1997).
[45] X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, Z. Zhu. Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals. Appl. Phys. Lett., 86, 091112(2005).
[46] C. Wu, T. Yang, C. Li, P. Wu. Investigation of effective plasma frequencies in one-dimensional plasma photonic crystals. Prog. Electromagn. Res., 126, 521-538(2012).
[47] X. He. Tunable terahertz graphene metamaterials. Carbon, 82, 229-237(2015).
[48] A. Marini, F. J. García de. Graphene-based active random metamaterials for cavity-free lasing. Phys. Rev. Lett., 116, 217401(2016).
[49] V. Kumar, A. Kumara, K. H. S. Singh, P. Kumar. Broadening of omni-directional reflection range by cascade 1D photonic crystal. Optoelectron. Adv. Mater., 5, 488-490(2011).
[50] J. P. Pandey. Enlargement of omnidirectional reflection range using cascaded photonic crystals. Int. J. Pure Appl. Phys., 13, 167-173(2017).
[51] Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. Chen, A. K. Azad. Independently tunable dual band perfect absorber based on graphene at mid-infrared frequencies. Sci. Rep., 5, 18463(2015).
[52] D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals-Molding the Flow of Light(2008).
[53] R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos. Nature of the photonic band gap: some insights from a field analysis. J. Opt. Soc. Am. B, 10, 328-332(1993).