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The complex band structures of a 1D anisotropic graphene photonic crystal are investigated, and the dispersion
relations are confirmed using the transfer matrix method and simulation of commercial software. It is found that
the result of using effective medium theory can fit the derived dispersion curves in the low wave vector.
Transmission, absorption, and reflection at oblique incident angles are studied for the structure, respectively.
Omni-gaps exist for angles as high as 80° for two polarizations. Physical mechanisms of the tunable dispersion
and transmission are explained by the permittivity of graphene and the effective permittivity of the multilayer
structure. © 2017 Chinese Laser Press
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1. INTRODUCTION

Graphene is a flat monolayer of graphite with carbon atoms
closely packed in a 2D honeycomb lattice [1,2]. The most
important features of graphene are that its conductivity or
dielectric function can be tuned by the chemical potential of
the graphene sheets via electrostatic biasing. One application
for graphene is to tune absorption properties of dielectric pho-
tonic crystals. A single layer of graphene can absorb as much as
2.3% of the incident light in a wide range of frequencies [3].
The absorption can be greatly enhanced by placing a monolayer
of graphene on top of a 1D Si/SiO2 photonic crystal [4] or on
top of 1D parity-time symmetric photonic crystals [5]. Near-
perfect single-band [6] and dual-band [7] absorption can be
achieved by inserting a graphene layer as a defect layer in the
asymmetric 1D photonic crystal.

A 1D graphene-based photonic crystal (GPC) usually refers
to an artificial periodic array composed of alternating graphene
and dielectric materials [8]. A complex 1D GPC was proposed
by periodically embedding the 1D traditional GPC into a back-
ground medium [9]. A 1D GPC has wide applications in tun-
able devices, such as biosensors [10], terahertz modulators [11],
polarizers [12,13], antenna radomes [14], narrowband filters
[15], and so on. Moreover, surface plasmon polaritons (SPPs)
can exist in 1D GPC and show a high degree of subwavelength
localization. It is possible to control the scattering of SPPs in
1D GPC with inhomogeneous doping [16] and to obtain
low-loss plasmonic supermodes by coupling SPPs in each
graphene sheet [17,18]. Finally, it is interesting that a 1D GPC

exhibits properties of hyperbolic metamaterials, such as epsilon-
near-zero phenomena [19], the tunable localized [20,21] and
long-wavelength Tamm SPPs [22], negative refraction with
superior transmission [23], and critical coupling effect [24].

For 1D GPC composed of alternating graphene and dielec-
tric materials, the transmission [8,25–30] and dispersion rela-
tion [12,31–33] have been investigated by using the transfer
matrix method (TMM) in which graphene is considered as
a conductor sheet without thickness or an isotropic material.
Actually, graphene is a uni-axial anisotropic material with per-
mittivity a tensor for its 2D nature [34,35]. By investigating
dispersion and transmission characteristics of 1D anisotropic
GPC, the application of terahertz amplification is proposed
[34]. Waveguide modes are described for 1D anisotropic GPC
through the Comsol Multiphysics software with the finite
element method, and hyperbolic dispersion characteristics are
found [35]. Besides, the defect modes of 1D anisotropic GPC
are investigated [36,37]. The transmission characteristic of 1D
anisotropic GPC with symmetrical dual-layer defects is studied
and found to have applications in tunable multiband filters
[36]. The defect mode can also be created by inserting a
1D anisotropic GPC as a defect layer in 1D dielectric photonic
crystal [37]. Dispersion relations of 1D anisotropic GPC dis-
cussed above [34,35] are usually obtained by treating the
periodic structure as a homogeneous effective medium with
anisotropic permittivity. Actually, for the dispersion relation
of 1D anisotropic GPC, the Bloch vector in graphene is
complex due to the inherent absorption of the graphene.
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Then, dispersion relations are divided into two parts: the real
part and imaginary part corresponding to the propagating and
evanescent Bloch waves, respectively.

In this work, the complex photonic band structures of
1D GPC composed of alternating anisotropic graphene and
dielectric materials are discussed. First, dispersion relations are
derived without using effective medium theory (EMT). Then,
dispersion properties are confirmed by transmission curves with
the TMM and commercial software. It is found that the result
using EMT only fit the dispersion curves in the region of a
low wave vector. Transmission, absorption, and reflection at
oblique incident angles are studied for the 1D anisotropic
GPC, respectively. Omni-gaps are found for angles as high
as 80° for the two polarizations. The physical mechanisms of
the tunable dispersion relations at normal incidence are ex-
plained based on the graphene permittivity and the effective
permittivity theory for 1D anisotropic GPC.

2. THEORETICAL MODEL AND FORMULATIONS

The schematic view of an obliquely incident electromagnetic
wave in 1D GPC is shown in Fig. 1(a). The layers are oriented
in the x − z plane, and electromagnetic waves propagate along
the plane with wave vector k0 and incident angle θ0. The per-
mittivity of graphene and dielectric are εa and εb with thick-
nesses of a and b, respectively. d � a� b is the period. ε0 and
εN�1 are the dielectric permittivity in the input and output
plane for periodic structure with N numbers of period. The
boundary surface between input plane and graphene is named
I, while that between graphene and dielectric is named II.
The incident wave can be divided into the TE polarization with

E � �0; Ey; 0� and H � �Hx; 0; Hz�, and the TM polariza-
tion with E � �Ex; 0; Ez� and H � �0; Hy; 0�. Figure 1(b)
shows the field distribution of the TE polarization.

Graphene is an optically uni-axial anisotropic material
because of its 2D nature, whose permittivity tensor can be
given by (when graphene lies in the x − y plane) [34,35]

εg �

2
64
εg;t 0 0

0 εg;t 0

0 0 εg;⊥

3
75: (1)

The normal component of graphene permittivity is εg;⊥ � 1,
as the normal electric field cannot excite any current in the
graphene sheet [34]. The tangential component of graphene
permittivity εg;t is expressed as [38]

εg;t � 1� j
σ�ω�
ε0ωa

: (2)

Here, ω is the angular frequency, ε0 is the permittivity in vac-
uum. σ�ω� � σintra � σinter is the surface conductivity of gra-
phene, and σintra and σinter are the intraband conductivity and
the interband conductivity and are defined in the following:

σintra � −j
e2kBT

π 2�ω − jΓ�

�
μc
kBT

� 2 ln
�
e−

μc
kBT � 1

��
; (3)

σinter � −j
e2

4π
ln

�
2μc − �ω − jΓ�
2μc � �ω − jΓ�

�
; (4)

where e is the charge of an electron, μc � ℏvF
ffiffiffiffiffi
πn

p
is the chemi-

cal potential with carrier density n, and the Femi velocity of
electrons vF . Γ is the phenomenological scattering rate, T is
the Kelvin temperature, K B is Boltzmann’s constant, and �
h∕�2π� is the reduced Plank’s constant.

A. Transfer Matrix Equation for TM Polarization
The transmission characteristics of the GPC can be described
by the TMM [38]. In the case of TM polarization with
E��Ex;0;Ez�e−jωt and H � �0; Hy; 0�e−jωt , Ex and Hy can
be connected by a transfer matrix M 1 between boundary I
and II [36]:  

EI
x

HI
y

!
� M 1

 
EII
x

HII
y

!
; (5)

M 1 �
 

cos�k1za� − j
η1

sin�k1za�
−jη1 sin�k1za� cos�k1za�

!
; (6)

where η1 � ωε0εg;t∕k1z , k1x � k0 sin θ0k1z �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εg;t − k

2
1x�εg;t∕εg;⊥�

q
.

Likewise, the transfer matrix M 2 in a dielectric layer can be
written as

M 2 �
 

cos�k2zb� − j
η2

sin�k2zb�
−jη2 sin�k2zb� cos�k2zb�

!
; (7)

where η2 � ωε0εb∕k2z , k2z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εb − k

2
2x

p
, k2x � k1x .

Fig. 1. (a) Schematic view of oblique wave in 1D GPC. (b) Field
distribution of TE polarization in the graphene layer.
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B. Transfer Matrix Equation for TE Polarization
In the case of TE polarization with E � �0; Ey; 0�e−jωt and
H � �Hx; 0; Hz�e−jωt , the Maxwell curl equations in this
case are

∂Hz

∂x
−
∂Hx

∂z
� jωε0εg;tEy; (8)

∂Ey

∂z
� −jωμ0Hx; (9)

∂Ey

∂x
� jωμ0Hz: (10)

EliminatingHx andHz from these equations, we can obtain
Ey satisfying the equation

∂2Ey

∂z2
� ∂2Ey

∂x2
� k20εg;tEy � 0: (11)

The dispersion relation of TE polarization in the anisotropic
graphene is calculated

k21z � k21x � k20εg;t : (12)

For boundary I and II, Ey and Hx can be connected by the
transfer matrix

M 1 �
 

cos�k1za� − j
η1

sin�k1za�
−jη1 sin�k1za� cos�k1za�

!
; (13)

where η1 � k1z
ωμ0

; k1z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εg;t − k

2
1x

q
; k1x � k0 sin θ0.

Likewise, the transfer matrix M 2 in a dielectric layer can be
written as

M 2 �
 

cos�k2zb� − j
η2

sin�k2zb�
−jη2 sin�k2zb� cos�k2zb�

!
; (14)

where η2 � k2z
ωμ0

, k2z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εb − k

2
2x

p
, k2x � k1x .

C. Transmission, Reflection, and Absorption
The transfer matrix M of the TM or TE polarization for one
period can be written as

M � M 1M 2

�
 
cos�k1za� cos�k2zb� − η2

η1
sin�k1za� sin�k2zb�

−jη2 cos�k1za� sin�k2zb� − jη1 sin�k1za� cos�k2zb�
− j
η2

cos�k1za� sin�k2zb� − j
η1

sin�k1za� cos�k2zb�
cos�k1za� cos�k2zb� − η1

η2
sin�k1za� sin�k2zb�

!
:

(15)

Then, for N periods, the electromagnetic field in the input
and output boundary can be written as�EI

x

HI
y

�
�MN

�EN�1
x

HN�1
y

�
�
�
m11 m12

m21 m22

��EN�1
x

HN�1
y

�
; (16)

where EN�1
x and HN�1

y are the electric and magnetic field in
the output boundary, mij are the elements of the matrix MN .

The refection coefficient r and transmission coefficient t are
given by

r�HI
yr

HI
yi
� m11η0�m12η0ηN�1 −m21 −m22ηN�1

m11η0�m12η0ηN�1�m21�m22ηN�1

;

t�HN�1
yt

H I
yi

� 2η0
m11η0�m12η0ηN�1�m21�m22ηN�1

; (17)

where

η0 �
( ffiffiffiffiffiffiffiffiffiffiffi

ε0∕μ0
p

cos θ0 For TEffiffiffiffiffiffiffiffiffiffiffi
ε0∕μ0

p
∕ cos θ0 For TM

;

ηN�1 �
( ffiffiffiffiffiffiffiffiffiffiffi

ε0∕μ0
p

cos θN�1 For TEffiffiffiffiffiffiffiffiffiffiffi
ε0∕μ0

p
∕ cos θN�1 For TM

;

where ε0 and εN�1 are the relative dielectric constants of
the dielectric in the input and output plane, respectively,
θ0 and θN�1 are angles in the input and output plane; in
our calculation, vacuum is used both in the input and output
plane.

The refection coefficient R and transmission coefficient T
and absorption A are written as

R � jrj2; T � jtj2; A � 1 − R − T : (18)

D. Dispersion Equation
Dispersion equation of 1D GPC can be described from
Eq. (15):

cos�kzd ��
1

2
Tr�M �

�cos�k1za�cos�k2zb�−
1

2

�
η1
η2
�η2
η1

�
sin�k1za�sin�k2zb�;

(19)

where Tr�M� represents the sum of diagonal elements of M ,
and kz � kR � jkI represents a complex wave vector in the z
direction. The real part kR and imaginary part kR are corre-
sponding to the propagating and evanescent Bloch waves, re-
spectively. If we rewrite the real and imaginary parts as f 1�ω�
and f 2�ω� for the right side in Eq. (19), respectively. That
means cos�kzd� � f 1�ω� � jf 2�ω�. Then, the real part and
imaginary part of the dispersion equation can be rewritten
in the form [39], respectively,

f 2
1�ω�

cos2�kRd �
−

f 2
2�ω�

sin2�kRd �
� 1 real; (20)

f 2
1�ω�

cosh2�kI d�
� f 2

2�ω�
sinh2�kI d�

� 1 imaginary; (21)

where
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f 1�ω� � cos�k2zb� cos�kR1za� cosh�kI1za�

−
1

2
sin�k2zb��ξR sin�kR1za� cosh�kI1za�

− ξI cos�kR1za� sinh�kI1za��;
f 2�ω� � − cos�k2zb� sin�kR1za� sinh�kI1za�

−
1

2
sin�k2zb��ξR cos�kR1za� sinh�kI1za�

� ξI sin�kR1za� cosh�kI1za��;
k1z � kR1z � jkI1z ;

ξR � jξI �
η1
η2

� η2
η1

�
8<
:

k2zεg;t
k1zεb

� k1zεb
k2zεg;t

�TM�
k1z
k2z

� k2z
k1z

�TE�
;

k1z �

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εg;t − k

2
1x�εg;t∕εg;⊥�

q
�TM�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20εg;t − k
2
1x

q
�TE�

;

k2z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εb − k

2
2x

q
�TE;TM�:

3. RESULTS AND DISCUSSION

For normal incidence, the transmission and dispersion of the
TM and TE polarizations are the same and not affected by the
normal component of graphene permittivity as k1z � k0

ffiffiffiffiffiffiεg;t
p .

We assume the dielectric is quartz with a relative permittivity of
εb � 4.4 and thickness b � 10 μm. The graphene has param-
eters of the chemical potential of μc � 0.8 eV, thickness
a � 0.35 nm, temperature T � 300 K and scattering rate
Γ � 1 THz [40,41].

Figure 2 shows the dispersion relations of the 1D GPC at
normal incidence based on dispersion equations. Figure 2(a)
shows the dispersion in the real part of kzd∕�2π� using
Eq. (20). It is seen that there are two photonic band gaps
(PBGs): the first gap locates from 7.15 to 7.87 THz, and the
second gap ranges from 14.3 to 14.71 THz. The Fabry–Perot

limit is f � mc∕�2b ffiffiffiffi
εb

p � � 7.15m THz (m is an integer) for
the single dielectric layer (without graphene sheet). It is noticed
that the frequencies at the low edges of the two gaps are equal to
the Fabry–Perot frequencies for m � 1 and 2. This observation
is consistent with the theory for a mesh grid–dielectric stack at
microwaves [42]. Figure 2(b) shows the imaginary part of
kzd∕�2π�, which indicates the damping using Eq. (21). It is
seen that the higher imaginary components coincide with
the corresponding gaps in the real part of dispersion. One no-
tices that the value of imag [kzd∕�2π�] between 0–2.3 THz is
quite high and is similar with the metallic band gap in metal–
dielectric photonic crystal [43]; we call it the graphene band
gap, and f c � 2.3 THz is the cut-off frequency. The two gaps
in the high frequencies determined by the periodic structure
belong to the structure band gaps.

To confirm the dispersion relation of the 1D anisotropic
GPC. Figures 3(a)–3(c) show the transmission, reflection, and
absorption curves calculated by two methods. The dashed line
denotes the result with the TMM method, and the dotted
line is the simulation result using the commercial software
(CST Microwave Studio) based on the finite-difference time
domain (FDTD) technique. They are almost overlapped to-
gether, except a little difference in the graphene band gap,
and the two structure band gaps are all in accordance with
these in the dispersion relation. It is worth mentioning that
these fast oscillations outside of the band gaps are the Fabry–
Perot oscillations of Bloch waves making round-trips upon
reflection at the multilayer boundaries [44]. The insert in
Fig. 3(c) shows the 3D simulation model with N � 20 periods
in the transmission direction of the z axis. The lengths in the
x and y directions are both 10 μm. The open boundary con-
dition is employed along the z direction while periodic boun-
dary conditions are employed along the x and y directions.
A frequency domain solver is selected to obtain the transmis-
sion S21 and reflection S11. The absorption is obtained through
A � 1 − S221 − S

2
11.

In the presence of the complex frequency dependence of
graphene permittivity, it is not possible to define an analytical
expression for the cut-off to predict the transparency in 1D

Fig. 2. Dispersion relation of the 1D GPC at normal incidence.
(a) Real part. (b) Imaginary part.

Fig. 3. Transmission, reflection, and absorption curves using the
TMM (solid line) and CST simulation (dotted line). Insert shows
the simulation model with N � 20 periods.
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GPC as the 1D metallic photonic crystal [45,46]. In the fol-
lowing, we can show that dispersion in the low frequency is
consistent with that of using EMT. The effective medium per-
mittivity of the GPC can be obtained based on Maxwell–
Garnett approach [47]. Here we define f � a∕d is the filling
factor of the graphene; then 1 − f � b∕d is the filling factor of
the dielectric.

The effective dispersion relations of the 1D GPC for TM
and TE polarization can be derived as [48]

k2z
εxeff

� k2x
εzeff

� k20 �TM�; (22)

k2z � k2x � εxeff k20 �TE�; (23)

where εxeff � f εg;t � �1 − f �εb, εzeff � εbεg;⊥
f εb��1−f �εg;⊥ are the

permittivity components of the composite parallel and
perpendicular to the graphene surface, respectively.

For normal incidence at kx � 0, the effective dispersion
relation for the TM and TE polarizations reduces to

ω2

c2
� k2z

εxeff
: (24)

Figure 4 shows the dispersion curve using the EMT method
and the dispersion equation for TM and TE polarizations. The
dash–dot, dash, and dot lines are dispersion curves using
dispersion equation for θ0 � 0°, 40°, and 80°, respectively. The
solid line with the same color shows results using the EMT
method. In Fig. 4(a), the real part of the dispersion using
dispersion equations is almost in accordance with that using
the EMT method except the higher value near the first gap
for the EMT method. For the imaginary part of the dispersion
in Fig. 4(b), higher values are obtained below the cut-off fre-
quency for the EMT method. Therefore, dispersion relations of
1D anisotropic GPC can be obtained by using an effective
medium method [34,35]; however, the result can fit the
dispersion curves using dispersion equations only in the low
wave vector.

Photonic crystals can prohibit propagation of electromag-
netic waves whose frequencies lie within the PBGs. The PBGs
are usually different for TE and TM polarizations at different
incident angles. If photonic crystal is designed to exhibit 100%
reflectivity at any angle of incidence for both TE and TM
polarizations [49,50], such a structure is generally known as
omni-directional photonic crystal and omni-directional PBGs.
Figure 5 shows color maps of transmission, absorption, and the
difference of reflection and absorption versus frequencies and
incident angles for TM and TE polarizations using the TMM
method, where the oblique incidence θ0 varies from 0° to 90°.
It is seen that the structure exhibits almost omnidirectional
PBGs for the first two gaps. The two omnidirectional PBGs
shift to the higher frequencies with little variation of the width
as the incident angle increases; the first gap shifts more slowly
than the second one. The cut-off frequency changes little below
θ0 � 80° for the two polarizations. All the transmissions are in
agreement with the dispersion relation in Fig. 4. In Fig. 5(b),
the absorption of the two polarizations tends to decrease
with the frequency increasing. The largest absorption appears
near the cut-off frequency. The larger absorptions locate at the

high edges of the two gaps caused by the absorption of gra-
phene layer, and the absorption magnitude is almost angle-
independence. As the lower edges of the gaps are determined
by the Fabry–Perot resonance of the structure, then little ab-
sorption is obtained. Figure 5(c) shows the difference between
the refection R and the absorption A with value of R-A. The
black regions are corresponding to the values of R-A < 0. It is
seen that the larger reflections appear in regions of the graphene
band gap, the structure gaps, and the regions with incident
angles larger than 80°. The absorption is larger than the reflec-
tion at the high edges of the gaps and the regions with higher
transmission.

A. Influence of Chemical Potential on Dispersion
and Transmission
As seen in Eq. (2), surface conductivity of the graphene de-
pends on the chemical potential. The chemical potential can
be tuned by the external gate voltages applied on graphene
layers. Then, the dispersion and propagation properties of
1D GPC can be further adjusted by the biased voltages on
graphene layers. Moreover, the chemical potential could also

Fig. 4. Dispersion curves of TM and TE polarization using EMT
method (solid line) and dispersion equation. (a) Real part.
(b) Imaginary part.
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be tuned by the electric field, magnetic field, and chemical dop-
ing [51]. Figure 6 shows the dispersion relations under different
chemical potential at normal incidence. The dash–dot, solid,
and doted lines denote the results of μc � 0.1, 0.5, and
0.9 eV, respectively. It is seen that the cut-off frequency and

the gaps shift to the higher frequencies with gap width enlarged,
and the magnitude of the imaginary part increases as μc increase
from 0.1 to 0.9 eV. Figure 7 shows the corresponding trans-
mission, absorption, and difference of absorption and reflec-
tion. As μc increases, the transmission decreases while the
cut-off frequency and the gaps increase, and the absorption
tends to increase and shift to the higher frequencies, the refec-
tion increases at the two gaps and below the cut-off frequencies.

Figure 8 shows the color maps of transmission and absorp-
tion versus different chemical potentials at normal incidence
using the TMM. For the transmission, as μc increases, the
cut-off frequency shifts to the higher frequency and width of
the two gaps increase. Location of the low edge of the two gaps
change little because they are determined by the Fabry–Perot
resonance of the dielectric layer, while the high edges shift
to the higher frequency. For the absorption, the largest absorp-
tion always appears near the cut-off frequencies, and the larger

Fig. 5. Color map of (a) transmission, (b) absorption, and (c) the
difference of reflection and absorption versus frequencies and incident
angles for TM and TE polarizations.

Fig. 6. Dispersion relation for chemical potential μc � 0.1, 0.5,
and 0.9 eV. (a) Real part. (b) Imaginary part.

Fig. 7. Transmission and absorption curves for chemical potential
μc � 0.1, 0.5, and 0.9 eV.

548 Vol. 5, No. 6 / December 2017 / Photonics Research Research Article



absorptions appear near the high edges of the two gaps. These
absorptions shift to the higher frequency with their width
increase as μc increases.

To explain these properties of dispersion and transmissions
at normal incidence, Fig. 9(a) shows the real part Real�εg;t� and
imaginary part Imag�εg;t� of graphene tangential component
εg;t versus chemical potential using Eq. (2). It should be noted
that the graphene permittivity is only determined by its tangen-
tial component εg;t at normal incidence. In the frequencies of
0–20 THz, the real part is negative, while the imaginary part is
positive. They both strongly depend on the frequency in the
low frequencies and vary slowly in the high frequencies. The
absolute value of the graphene tangential permittivity increases
as chemical potential increases. The larger difference of dielec-
tric function between graphene and dielectric enlarges the gap
[52]. On the other hand, the variation of the cut-off frequency
and the first gap is larger than in the second gap, as the gra-
phene permittivity becomes larger in the low frequencies.

Figure 9(b) shows the real and imaginary parts of the effec-
tive permittivity εeff using the effective dispersion relations of
Eqs. (22) and (23), where εeff � εxeff for normal incidence. It is

seen that the real part decreases as chemical potential increases.
According to the variational principle [53], decreasing of dielec-
tric constant leads to increasing of frequency modes; then, the
dispersion shifts toward the higher frequencies. The imaginary
part of effective permittivity is close to 0 at frequencies larger
than 6 THz, while it has large increases below 6 THz, which
would give rise to the larger absorption in the low frequencies.
As the larger imaginary part of the effective permittivity shifts
to the higher frequency with μc increasing, the absorption
correspondingly shifts.

4. CONCLUSION

The dispersion relations of 1D anisotropic GPC composed of
alternative graphene and dielectric layers are derived based
on the TMM method. The complex band structures under
oblique incidence are investigated. Dispersion properties of
the 1D anisotropic GPC are confirmed by transmission curves
with the TMM and commercial software. For the dispersion in
the real part, the frequencies at the low edges of the two gaps
are equal to the Fabry–Perot frequencies. The dispersion in the

Fig. 8. Color map of (a) transmission and (b) absorption for differ-
ent μc � 0.1–1.0 eV.

Fig. 9. Influence of the chemical potential on real and imaginary
part of (a) graphene tangential permittivity and (b) effective dielectric
constant of the multilayer for normal incidence.
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imaginary part indicates the damping, and the higher imaginary
components coincide with the corresponding gaps in the real
part of dispersion. It is also found that the dispersion using the
EMT can fit the result obtained from the dispersion equations
in the low frequency. Furthermore, almost omnidirectional and
polarization-independent PBGs can be found in the structure.
Tunable dispersion and transmission properties versus chemical
potential are explained by the graphene permittivity as well as
the effective permittivity of the GPC structure.
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