• Journal of Semiconductors
  • Vol. 45, Issue 3, 031301 (2024)
Chao Shen1、3, Wenkang Zhan1、2, Manyang Li1、2, Zhenyu Sun1、2、*, Jian Tang4, Zhaofeng Wu3, Chi Xu5, Bo Xu1、2, Chao Zhao1、2、**, and Zhanguo Wang1、2
Author Affiliations
  • 1Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101804, China
  • 3School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
  • 4School of New Energy and Electronics, Yancheng Teachers University, Yancheng 224002, China
  • 5Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/45/3/031301 Cite this Article
    Chao Shen, Wenkang Zhan, Manyang Li, Zhenyu Sun, Jian Tang, Zhaofeng Wu, Chi Xu, Bo Xu, Chao Zhao, Zhanguo Wang. Development of in situ characterization techniques in molecular beam epitaxy[J]. Journal of Semiconductors, 2024, 45(3): 031301 Copy Citation Text show less
    References

    [1] W Nunn, T K Truttmann, B Jalan. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res, 36, 4846(2021).

    [2] Z Zuo, Z G Xu, R J Zheng et al. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Sci Rep, 5, 14760(2015).

    [3] C Zhao, T K Ng, N N Wei et al. Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Lett, 16, 1056(2016).

    [4] D Priante, B Janjua, A Prabaswara et al. Highly uniform ultraviolet-a quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer. Opt Mater Express, 7, 4214(2017).

    [5] C Zhao, Y H Chen, B Xu et al. Evolution of InAs nanostructures grown by droplet epitaxy. Appl Phys Lett, 91, 033112(2007).

    [6] A T Bollinger, J Wu, I Božović. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy. APL Mater, 4, 053205(2016).

    [7] H S Kim, J Jeong, G H Kwon et al. Improvement of electrical performance using PtSe2/PtTe2 edge contact synthesized by molecular beam epitaxy. Appl Surf Sci, 585, 152507(2022).

    [8] Y F Ma, S C Zhang, Z F Peng et al. Investigation on 1065 nm laser performance with Nd: GdLaNbO4 mixed crystal and molybdenum disulfide. Opt Laser Technol, 120, 105715(2019).

    [9] L E Bourree, D R Chasse, P L Stephan Thamban et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVDSPIE Proceedings. Low-Light-Level and Real-Time Imaging Systems, Components, and Applications(2003).

    [10] F Schubert, S Zybell, J Heitmann et al. Influence of the substrate grade on structural and optical properties of GaN/AlGaN superlattices. J Cryst Growth, 425, 145(2015).

    [11] M Opel. Spintronic oxides grown by laser-MBE. J Phys D: Appl Phys, 45, 033001(2012).

    [12] K Kosiel. MBE—Technology for nanoelectronics. Vacuum, 82, 951(2008).

    [13] K Zekentes, V Papaioannou, B Pecz et al. Early stages of growth of β-SiC on Si by MBE. J Cryst Growth, 157, 392(1995).

    [14] N A Güsken, T Rieger, P Zellekens et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures. Nanoscale, 9, 16735(2017).

    [15] H Iha, Y Hirota, M Yamauchi et al. Effect of arsenic cracking on in incorporation into MBE-grown InGaAs layer. Phys Status Solidi C, 12, 524(2015).

    [16] K J Zhu, Y H Bai, X Y Hong et al. Investigating and manipulating the molecular beam epitaxy growth kinetics of intrinsic magnetic topological insulator MnBi2Te4 with in situ angle-resolved photoemission spectroscopy. J Phys: Condens Matter, 32, 475002(2020).

    [17] J Q Fan, S Z Wang, X Q Yu et al. Molecular beam epitaxy growth and surface structure of Sr1–xNdxCuO2 cuprate films. Phys Rev B, 101, 180508(2020).

    [18] D V Marin, V A Shvets, I A Azarov et al. Ellipsometric thermometry in molecular beam epitaxy of mercury cadmium telluride. Infrared Phys Technol, 116, 103793(2021).

    [19] M Hilse, X Y Wang, P Killea et al. Spectroscopic ellipsometry as an in situ monitoring tool for Bi2Se3 films grown by molecular beam epitaxy. J Cryst Growth, 566/567, 126177(2021).

    [20] A Botchkarev, A Salvador, B Sverdlov et al. Properties of GaN films grown under Ga and N rich conditions with plasma enhanced molecular beam epitaxy. J Appl Phys, 77, 4455(1995).

    [21] H S Peng, Q W Li, T Chen. Preface. Industrial applications of carbon nanotubes. Amsterdam: Elsevier(2017).

    [22] S Y Karpov, R A Talalaev, Y N Makarov et al. Surface kinetics of GaN evaporation and growth by molecular-beam epitaxy. Surf Sci, 450, 191(2000).

    [23] K Mudiyanselage, K Katsiev, H Idriss. Effects of experimental parameters on the growth of GaN nanowires on Ti-film/Si(1 0 0) and Ti-foil by molecular beam epitaxy. J Cryst Growth, 547, 125818(2020).

    [24] Y W Jung, T J Kim, Y D Kim et al. Temperature dependence of the dielectric response of AlSb. AIP Conference Proceedings, 37(2011).

    [25] M Albert, C Golla, C Meier. Optical in situ temperature management for high-quality ZnO molecular beam epitaxy. J Cryst Growth, 557, 126009(2021).

    [26] M Fortin-Deschênes, O Waller, T O Menteş et al. Synthesis of antimonene on germanium. Nano Lett, 17, 4970(2017).

    [27] W Zhang, H Enriquez, A J Mayne et al. First steps of blue phosphorene growth on Au(1 1 1). Mater Today, 39, 1153(2021).

    [28] W Wang, Q A Zhou, Y A Dong et al. Critical thickness for strain relaxation of Ge1–xSnx (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001). Appl Phys Lett, 106, 232106(2015).

    [29] Y Kong, C J Bennett, C J Hyde. A review of non-destructive testing techniques for the in situ investigation of fretting fatigue cracks. Mater Des, 196, 109093(2020).

    [30] H J Lin, H W Li, H Y Shao et al. In situ measurement technologies on solid-state hydrogen storage materials: A review. Mater Today Energy, 17, 100463(2020).

    [31] D M Zhernokletov, H Dong, B Brennan et al. Investigation of arsenic and antimony capping layers, and half cycle reactions during atomic layer deposition of Al2O3 on GaSb(100). J Vac Sci Technol A, 31, 060602(2013).

    [32] P Laukkanen, M P J Punkkinen, J J K Lång et al. Bismuth-containing c(4 × 4) surface structure of the GaAs(1 0 0) studied by synchrotron-radiation photoelectron spectroscopy and ab initio calculations. J Electron Spectrosc Relat Phenom, 193, 34(2014).

    [33] W Zhang, P K J Wong, S Jiang et al. Integrating spin-based technologies with atomically controlled van der Waals interfaces. Mater Today, 51, 350(2021).

    [34] A A Lazarenko, T N Berezovskaya, D V Denisov et al. Preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy. J Phys, 917, 32003(2017).

    [35] V Kladko, A Kuchuk, P Lytvyn et al. Substrate effects on the strain relaxation in GaN/AlN short-period superlattices. Nanoscale Res Lett, 7, 289(2012).

    [36] T Zhang, N Levy, J Ha et al. Scanning tunneling microscopy of gate tunable topological insulator Bi2Se3 thin films. Phys Rev B, 87, 115410(2013).

    [37] A F Bai, M Hilse, P D Patil et al. Probing the growth quality of molecular beam epitaxy-grown Bi2Se3 films via in situ spectroscopic ellipsometry. J Cryst Growth, 591, 126714(2022).

    [38] W Z Lin, A Foley, K Alam et al. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy. Rev Sci Instrum, 85, 043702(2014).

    [39] J Huidobro, J Aramendia, G Arana et al. Reviewing in situ analytical techniques used to research Martian geochemistry: From the Viking project to the MMX future mission. Anal Chim Acta, 1197, 339499(2022).

    [40] D M Lin, K K Li, L M Zhou. Advanced in situ characterizations of nanocomposite electrodes for sodium-ion batteries-A short review. Compos Commun, 25, 100635(2021).

    [41] R O'Hegarty, O Kinnane, D Lennon et al. In-situ U-value monitoring of highly insulated building envelopes: Review and experimental investigation. Energy Build, 252, 111447(2021).

    [42] R P Socha, M Szczepanik-Ciba, W Powroźnik et al. Epitaxial α-Mn(001) films on MgO(001). Thin Solid Films, 556, 137(2014).

    [43] R Yang, T Krzyzewski, T Jones. The study of in situ scanning tunnelling microscope characterization on GaN thin film grown by plasma assisted molecular beam epitaxy. Appl Phys Lett, 102, 112104(2013).

    [44] J K Kawasaki, B D Schultz, H Lu et al. Surface-mediated tunable self-assembly of single crystal semimetallic ErSb/GaSb nanocomposite structures. Nano Lett, 13, 2895(2013).

    [45] I Hernández-Rodríguez, J M García, J A Martín-Gago et al. Graphene growth on Pt(111) and Au(111) using a MBE carbon solid-source. Diam Relat Mater, 57, 58(2015).

    [46] M Haze, Y Torii, R Peters et al. In situ STM observation of nonmagnetic impurity effect in MBE-grown CeCoIn5 films. J Phys Soc Jpn, 87, 034702(2018).

    [47] X Q Cai, Z L Xu, H Zhou et al. Epitaxial growth and band structure of antiferromagnetic Mott insulator CeOI. Phys Rev Materials, 4, 064003(2020).

    [48] M E Dávila, L Xian, S Cahangirov et al. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys, 16, 095002(2014).

    [49] P Allongue, F Maroun. Electrodeposited magnetic layers in the ultrathin limit. MRS Bull, 35, 761(2010).

    [50] Z B Wu, D Putzky, A K Kundu et al. Homogeneous superconducting gap in DyBa2Cu3O7–δ synthesized by oxide molecular beam epitaxy. Phys Rev Materials, 4, 124801(2020).

    [51] C L Song, Y L Wang, Y P Jiang et al. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl Phys Lett, 97, 143118(2010).

    [52] T Toujyou, S Tsukamoto. Temperature-dependent site control of InAs/GaAs (001) quantum dots using a scanning tunneling microscopy tip during growth. Nanoscale Res Lett, 5, 1930(2010).

    [53] T Toujyou, S Tsukamoto. in situ STM observation during InAs growth in nano holes at 300 °C. Surf Sci, 605, 1320(2011).

    [54] B Rauschenbach, A Lotnyk, L Neumann et al. Ion beam assisted deposition of thin epitaxial GaN films. Materials, 10, 690(2017).

    [55] T Nishinaga. Handbook of crystal growth(2015).

    [56] M Kolíbal, T Pejchal, T Musálek et al. Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth. Nanotechnology, 29, 205603(2018).

    [57] K Wang, T Yamaguchi, T Araki et al. In situ investigation of growth mechanism during molecular beam epitaxy of In-polar InN. Jpn J Appl Phys, 50, 01AE02(2011).

    [58] J Kim, B Y Hou, C Park et al. Effect of defects on reaction of NiO surface with Pb-contained solution. Sci Rep, 7, 44805(2017).

    [59] H B Deng, Y A Li, Z L Feng et al. Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals. Chin Phys B, 30, 126801(2021).

    [60] P Sutter, E Sutter. Growth mechanisms of anisotropic layered group IV chalcogenides on van der waals substrates for energy conversion applications. ACS Appl Nano Mater, 1, 3026(2018).

    [61] M Fortin-Deschênes, O Moutanabbir. Recovering the semiconductor properties of the epitaxial group V 2D materials antimonene and arsenene. J Phys Chem C, 122, 9162(2018).

    [62] S Kanjanachuchai, T Wongpinij, S Kijamnajsuk et al. Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations. J Appl Phys, 123, 161570(2018).

    [63] A Mandziak, G D Soria, J E Prieto et al. Different spin axis orientation and large antiferromagnetic domains in Fe-doped NiO/Ru(0001) epitaxial films. Nanoscale, 12, 21225(2020).

    [64] B Croes, F Cheynis, P Müller et al. Polar surface of ferroelectric nanodomains in GeTe thin films. Phys Rev Materials, 6, 064407(2022).

    [65] A Bag, S Das, D Biswas. Observation of in-situ reciprocal lattice evolution of AlGaN/InGaN on Si (111) through GaN and AlN interlayers by RHEED and reflectance. Phys Status Solidi C, 13, 186(2016).

    [66] W Guo, D X Ji, Z S Yuan et al. Epitaxial growth of bronze phase titanium dioxide by molecular beam epitaxy. AIP Adv, 9, 035230(2019).

    [67] H Zhou, X X Liao, S M Ke. Effects of strain on ultrahigh-performance optoelectronics and growth behavior of high-quality indium tin oxide films on yttria-stabilized zirconia (001) substrates. J Mater Sci, 32, 21462(2021).

    [68] K Ghosh, P Busi, S Das et al. Excimer laser annealing: An alternative route and its optimisation to effectively activate Si dopants in AlN films grown by plasma assisted molecular beam epitaxy. Mater Res Bull, 97, 300(2018).

    [69] J Zhu, J Jing, W B Luo et al. Epitaxial growth of (100)-oriented ceria film on c-plane GaN/Al2O3 using YSZ/TiO2 buffer layers by pulse laser molecular beam epitaxy. J Vac Sci Technol B, 29, 032202(2011).

    [70] B Strawbridge, N Cernetic, J Chapley et al. Influence of surface topography on in situ reflection electron energy loss spectroscopy plasmon spectra of AlN, GaN, and InN semiconductors. J Vac Sci Technol A, 29, 041602(2011).

    [71] A Alanís, H Vilchis, E López et al. Cubic GaN films grown below the congruent sublimation temperature of (0 0 1) GaAs substrates by plasma-assisted molecular beam epitaxy. J Vac Sci Technol B, 34, 02L115(2016).

    [72] J Pak, W Lin, K Wang et al. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride. J Vac Sci Technol A, 28, 536(2010).

    [73] Y P Li, H Q Wang, H Zhou et al. Tuning the surface morphologies and properties of ZnO films by the design of interfacial layer. Nanoscale Res Lett, 12, 551(2017).

    [74] Q Li, M J Ying, M D Zhang et al. Structural characterization and surface polarity determination of polar ZnO films prepared by MBE. Appl Nanosci, 13, 3197(2023).

    [75] M T Dau, M Petit, A Watanabe et al. Growth of germanium nanowires on silicon(111) substrates by molecular beam epitaxy. J Nanosci Nanotech, 11, 9292(2011).

    [76] F F Ge, X M Wang, Y N Li et al. Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices. J Nanopart Res, 13, 6447(2011).

    [77] C Mietze, E A Jr DeCuir, M O Manasreh et al. Inter- and intrasubband spectroscopy of cubic AlN/GaN superlattices grown by molecular beam epitaxy on 3C-SiC. Phys Status Solidi (c), 7, 64(2010).

    [78] Z Yang, C Ke, L L Sun et al. Growth and structure investigation of multiferroic superlattices: [(La0.8Sr0.2MnO3)4n/(BaTiO3)3n]M. Solid State Commun, 150, 1432(2010).

    [79] J Kwoen, Y Arakawa. Classification of reflection high-energy electron diffraction pattern using machine learning. Cryst Growth Des, 20, 5289(2020).

    [80] R C Haislmaier, G Stone, N Alem et al. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy. Appl Phys Lett, 109, 043102(2016).

    [81] A McClure, P Rugheimer, Y U Idzerda. Magnetic and structural properties of single crystal Fe1–xZnx thin films. J Appl Phys, 109, 07A932(2011).

    [82] N Halder, J Suseendran, S Chakrabarti et al. Effect of InAlGaAs and GaAs combination barrier thickness on the duration of dot formation in different layers of stacked InAs/GaAs quantum dot heterostructure grown by MBE. J Nanosci Nanotech, 10, 5202(2010).

    [83] J E Zhao, Y P Zeng, C Liu et al. Substrate temperature dependence of ZnTe epilayers grown on GaAs(001) by molecular beam epitaxy. J Cryst Growth, 312, 1491(2010).

    [84] Y Ma, A Edgeton, H Paik et al. Realization of epitaxial thin films of the topological crystalline insulator Sr3SnO. Advanced Materials, 32, 2000809(2020).

    [85] J Encomendero, S M Islam, D Jena et al. Molecular beam epitaxy of polar III-nitride resonant tunneling diodes. J Vac Sci Technol A, 39, 023409(2021).

    [86] T Dursap, M Vettori, C Botella et al. Wurtzite phase control for self-assisted GaAs nanowires grown by molecular beam epitaxy. Nanotechnology, 32, 155602(2021).

    [87] M Debiossac, P Atkinson, A Zugarramurdi et al. Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination. Appl Surf Sci, 391, 53(2017).

    [88] P Schöffmann, S Pütter, J Schubert et al. Tuning the Co/Sr stoichiometry of SrCoO2.5 thin films by RHEED assisted MBEgrowth. Mater Res Express, 7, 116404(2020).

    [89] D V Nechaev, A A Sitnikova, P N Brunkov et al. Stress generation and relaxation in (Al, Ga)N/6H-SiC heterostructure grown by plasma-assisted molecular-beam epitaxy. Tech Phys Lett, 43, 443(2017).

    [90] D Zolotukhin, D Nechaev, N Kuznetsova et al. Control of stress and threading dislocation density in the thick GaN/AlN buffer layers grown on Si (111) substrates by low- temperature MBE. J Phys:Conf Ser, 741, 012025(2016).

    [91] P Vogt, O Bierwagen. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy. Appl Phys Lett, 106, 081910(2015).

    [92] J Jakob, P Schroth, L Feigl et al. Correlating in situ RHEED and XRD to study growth dynamics of polytypism in nanowires. Nanoscale, 13, 13095(2021).

    [93] S Sen, S Paul, C Singha et al. Monitoring the growth of III-nitride materials by plasma assisted molecular beam epitaxy employing diffuse scattering of RHEED. J Vac Sci Technol B, 38, 014007(2020).

    [94] B J May, J J Kim, P Walker et al. Molecular beam epitaxy of GaAs templates on water soluble NaCl thin films. J Cryst Growth, 586, 126617(2022).

    [95] C Keenan, S Chandril, T H Myers et al. In-situ stoichiometry determination using X-ray fluorescence generated by reflection-high-energy-electron-diffraction. J Appl Phys, 109, 114305(2011).

    [96] S R Provence, S Thapa, R Paudel et al. Machine learning analysis of perovskite oxides grown by molecular beam epitaxy. Phys Rev Materials, 4, 083807(2020).

    [97] J Kwoen, Y Arakawa. Classification of in situ reflection high energy electron diffraction images by principal component analysis. Jpn J Appl Phys, 60, SBBK03(2021).

    [98] I Yanilkin, W Mohammed, A Gumarov et al. Synthesis, characterization, and magnetoresistive properties of the epitaxial Pd0.96Fe0.04/VN/Pd0.92Fe0.08 superconducting spin-valve heterostructure. Nanomaterials, 11, 64(2020).

    [99] M. A Carpenter, S Mathur, A Kolmakov. Metal oxide nanomaterials for chemical sensors. Springer(2013).

    [100] O Kuschel, W Spiess, T Schemme et al. Real-time monitoring of the structure of ultrathin Fe3O4 films during growth on Nb-doped SrTiO3(001). Appl Phys Lett, 111, 041902(2017).

    [101] A Esmaeili, I V Yanilkin, A I Gumarov et al. Epitaxial growth of Pd1−xFex films on MgO single-crystal substrate. Thin Solid Films, 669, 338(2019).

    [102] L Zhang, D X Shi, S X Du et al. Structural transition and thermal stability of a coronene molecular monolayer on Cu(110). J Phys Chem C, 114, 11180(2010).

    [103] K Ruwisch, T Pohlmann, M Hoppe et al. Inferface magnetization phenomena in epitaxial thin Fe3O4/CoxFe3–xO4 bilayers. J Phys Chem C, 125, 23327(2021).

    [104] C Navío, M Villanueva, E Céspedes et al. Ultrathin films of L1-MnAl on GaAs (001): A hard magnetic MnAl layer onto a soft Mn-Ga-As-Al interface. APL Mater, 6, 101109(2018).

    [105] D S Dhungana, C Grazianetti, C Martella et al. Two-dimensional silicene–stanene heterostructures by epitaxy. Adv Funct Materials, 31, 2102797(2021).

    [106] M A Hafez, M K Zayed, H E Elsayed-Ali. Review: Geometric interpretation of reflection and transmission RHEED patterns. Micron, 159, 103286(2022).

    [107] M Debiossac, P Roncin. Image processing for grazing incidence fast atom diffraction. Nucl Instrum Meth Phys Res Sect B, 382, 36(2016).

    [108] M Debiossac, A Zugarramurdi, H Khemliche et al. Combined experimental and theoretical study of fast atom diffraction on the β2(2 × 4) reconstructed GaAs(001) surface. Phys Rev B, 90, 155308(2014).

    [109] D G Merkel, D Bessas, Z Zolnai et al. Evolution of magnetism on a curved nano-surface. Nanoscale, 7, 12878(2015).

    [110] Y V Knyazev, A I Chumakov, A Dubrovskiy et al. Nuclear forward scattering application to the spiral magnetic structure study in ε–Fe2O3. Phys Rev B, 101, 094408(2020).

    [111] C Strohm, P Van der Linden, R Rüffer. Nuclear forward scattering of synchrotron radiation in pulsed high magnetic fields. Phys Rev Lett, 104, 087601(2010).

    [112] R J Gu, C A Shen, Y Y Guo et al. in situ thickness and temperature measurements of CdTe grown by molecular beam epitaxy on GaAs substrate. J Vac Sci Technol B, 30, 041203(2012).

    [113] K Fleischer, R Verre, O Mauit et al. Reflectance anisotropy spectroscopy of magnetite (110) surfaces. Phys Rev B, 89, 195118(2014).

    [114] J Ortega-Gallegos, L E Guevara-Macías, A Lastras-Martínez et al. Rapid reflectance-anisotropy spectroscopy as an optical probe for real-time monitoring of thin film deposition. AIP Conference Proceedings, 1934, 040001(2018).

    [115] J Ortega-Gallegos, L E Guevara-Macías, A D Ariza-Flores et al. On the origin of reflectance-anisotropy oscillations during GaAs (0 0 1) homoepitaxy. Appl Surf Sci, 439, 963(2018).

    [116] V Cantelli, O Geaymond, O Ulrich et al. Thein situ growth of nanostructures on surfaces (INS) endstation of the ESRF BM32 beamline: Acombined UHV–CVD and MBE reactor forin situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires. J Synchrotron Radiat, 22, 688(2015).

    [117] Y Li, F Wrobel, X Yan et al. Interface creation on a mixed-terminated perovskite surface. Appl Phys Lett, 118, 061601(2021).

    [118] S Kowarik. Thin film growth studies using time-resolved X-ray scattering. J Phys:Condens Matter, 29, 043003(2017).

    [119] T K Andersen, S Cook, G Wan et al. Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites. ACS Appl Mater Interfaces, 10, 5949(2018).

    [120] Y Li, F Wrobel, Y J Cheng et al. Self-healing growth of LaNiO3 on a mixed-terminated perovskite surface. ACS Appl Mater Interfaces, 14, 16928(2022).

    [121] N Kakuda, T Kaizu, M Takahasi et al. Time-resolved X-ray diffraction measurements of high-density InAs quantum dots on Sb/GaAs layers and the suppression of coalescence by Sb-irradiated growth interruption. Jpn J Appl Phys, 49, 095602(2010).

    [122] M Takahasi. X-ray diffraction study of crystal growth dynamics during molecular-beam epitaxy of III–V semiconductors. J Phys Soc Jpn, 82, 021011(2013).

    [123] X Yan, F Wrobel, Y Li et al. in situ X-ray and electron scattering studies of oxide molecular beam epitaxial growth. APL Mater, 8, 101107(2020).

    [124] J H Lee, I C Tung, S H Chang et al. in situ surface/interface X-ray diffractometer for oxide molecular beam epitaxy. Rev Sci Instrum, 87, 013901(2016).

    [125] H Hong, J L McChesney, F Wrobel et al. in situ study on the evolution of atomic and electronic structure of LaTiO3/SrTiO3 system. Phys Rev Materials, 6, L011401(2022).

    [126] J Chakraborty, T P Harzer, M J Duarte et al. Phase decomposition in nanocrystalline Cr0.8Cu0.2 thin films. J Alloys Compd, 888, 161391(2021).

    [127] N Q Diep, S K Wu, C W Liu et al. Pressure induced structural phase crossover of a GaSe epilayer grown under screw dislocation driven mode and its phase recovery. Sci Rep, 11, 19887(2021).

    [128] T Sasaki, M Takahasi. Influence of indium supply on Au-catalyzed InGaAs nanowire growth studied by in situ X-ray diffraction. J Cryst Growth, 468, 135(2017).

    [129] M Takahasi. Quantitative monitoring of InAs quantum dot growth using X-ray diffraction. J Cryst Growth, 401, 372(2014).

    [130] S M Mostafavi Kashani, D Kriegner, D Bahrami et al. X-ray diffraction analysis of the angular stability of self-catalyzed GaAs nanowires for future applications in solar-light-harvesting and light-emitting devices. ACS Appl Nano Mater, 2, 689(2019).

    [131] T Sasaki, H Suzuki, A Sai et al. Growth temperature dependence of strain relaxation during InGaAs/GaAs(0 0 1) heteroepitaxy. J Cryst Growth, 323, 13(2011).

    [132] T Sasaki, M Takahasi, H Suzuki et al. in situ three-dimensional X-ray reciprocal-space mapping of InGaAs multilayer structures grown on GaAs(001) by MBE. J Cryst Growth, 425, 13(2015).

    [133] T Sasaki, M Takahasi. Real-time structural analysis of InGaAs/InAs/GaAs(1 1 1)A interfaces by in situ synchrotron X-ray reciprocal space mapping. J Cryst Growth, 512, 33(2019).

    [134] S Ibrahimkutty, A Seiler, T Prüßmann et al. A portable ultrahigh-vacuum system for advanced synchrotron radiation studies of thin films and nanostructures: EuSi2nano-islands. J Synchrotron Radiat, 22, 91(2015).

    [135] C X Wang, X G Zhu, L Nilsson et al. in situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res, 6, 688(2013).

    [136] T Hutchins, M Nazari, M Eridisoorya et al. Raman measurements of substrate temperature in a molecular beam epitaxy growth chamber. Rev Sci Instrum, 86, 014904(2015).

    [137] Y R Fang, Z L Zhang, M T Sun. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. Rev Sci Instrum, 87, 033104(2016).

    [138] Y W Jung, J S Byun, S Y Hwang et al. Dielectric response of AlP by in-situ ellipsometry. Thin Solid Films, 519, 8027(2011).

    [139] B Johs, P He. Substrate wobble compensation for in situ spectroscopic ellipsometry measurements. J Vac Sci Technol B, 29, 03C111(2011).

    [140] Z T Mi, L Z Wang, C Jagadish. Preface. Semiconductors and semimetals. Elsevier(2017).

    [141] A V Voitsekhovskii, S N Nesmelov, S M Dzyadukh et al. Electrical characterization of insulator-semiconductor systems based on graded band gap MBE HgCdTe with atomic layer deposited Al2O3 films for infrared detector passivation. Vacuum, 158, 136(2018).

    [142] N Mikhailov, V Shvets, D Ikusov et al. Interface studies in HgTe/HgCdTe quantum wells. Phys Status Solidi B, 257, 1900598(2020).

    [143] V A Shvets, N N Mikhailov, D G Ikusov et al. Determining the compositional profile of HgTe/CdxHg1–xTe quantum wells by single-wavelength ellipsometry. Opt Spectrosc, 127, 340(2019).

    [144] M Tsukada, K Kobayashi, N Isshiki et al. First-principles theory of scanning tunneling microscopy. Surf Sci Rep, 13, 267(1991).

    [145] H Koinuma, S Gonda, J P Gong et al. Surface and interface characterization of high Tc related epitaxial films by STM/STS and XPS. J Phys Chem Solids, 54, 1215(1993).

    [146] J X Dai, W B Wang, M Brahlek et al. Restoring pristine Bi2Se3 surfaces with an effective Se decapping process. Nano Res, 8, 1222(2015).

    [147] L Zhang, T Yang, M F Sahdan et al. Precise layer-dependent electronic structure of MBE-grown PtSe2. Adv Elect Materials, 7, 2100559(2021).

    [148] H Y Xue, H Yang, Y F Wu et al. Molecular beam epitaxy of superconducting PdTe2 films on topological insulator Bi2Te3. Sci China Phys Mech Astron, 62, 76801(2019).

    [149] J H Batey. The physics and technology of quadrupole mass spectrometers. Vacuum, 101, 410(2014).

    [150] M Sobanska, Z R Zytkiewicz, G Calabrese et al. Comprehensive analysis of the self-assembled formation of GaN nanowires on amorphous AlxOy: in situ quadrupole mass spectrometry studies. Nanotechnology, 30, 154002(2019).

    [151] M Wölz, S Fernández-Garrido, C Hauswald et al. Indium incorporation in InxGa1–xN/GaN nanowire heterostructures investigated by line-of-sight quadrupole mass spectrometry. Cryst Growth Des, 12, 5686(2012).

    [152] F Katmis, R Calarco, K Perumal et al. Insight into the growth and control of single-crystal layers of Ge–Sb–Te phase-change material. Cryst Growth Des, 11, 4606(2011).

    [153] T Auzelle, G Calabrese, S Fernández-Garrido. Tuning the orientation of the top-facets of GaN nanowires in molecular beam epitaxy by thermal decomposition. Phys Rev Materials, 3, 013402(2019).

    [154] J McCoy, C T Lu, R Kaspi. in situ monitoring of GaSb1–xBix growth using desorption mass spectrometry. J Vac Sci Technol B, 38, 022210(2020).

    [155] R Kaspi, C T Lu, C Yang et al. Desorption mass spectrometry: Revisiting the in situ calibration technique for mixed group-V alloy MBE growth of ~3.3 µm diode lasers. J Cryst Growth, 425, 5(2015).

    [156] Q N Thong, D M Martin, P Agham et al. Growth of crystalline LaAlO3 by atomic layer deposition. Proceedings Volume 8987, Oxide-based Materials and Devices V, 8987, 898712(2014).

    [157] Y H Lin, K Y Lin, W J Hsueh et al. Interfacial characteristics of Y2O3/GaSb(001) grown by molecular beam epitaxy and atomic layer deposition. J Cryst Growth, 477, 164(2017).

    [158] P Maiti, P Guha, H Hussain et al. Microscopy and spectroscopy study of nanostructural phase transformation from β-MoO3 to Mo under UHV - MBE conditions. Surf Sci, 682, 64(2019).

    [159] G G Wu, W T Zheng, F B Gao et al. Near infrared electroluminescence of ZnMgO/InN core-shell nanorod heterostructures grown on Si substrate. Phys Chem Chem Phys, 18, 20812(2016).

    [160] G Meng, H P Ying, X M Wang et al. Epitaxial growth and determination of the band alignment for NixMg1-xO/MgO interface by laser molecular beam epitaxy. J Alloys Compd, 822, 153618(2020).

    [161] C Han, D Xiang, M R Zheng et al. Tuning the electronic properties of ZnO nanowire field effect transistors via surface functionalization. Nanotechnology, 26, 095202(2015).

    [162] X M Wang, D W Yan, C L Shen et al. Cu2O/MgO band alignment and Cu2O-Au nanocomposites with enhanced optical absorption. Opt Mater Express, 3, 1974(2013).

    [163] H Seo, M Choi, A B Posadas et al. Combined in-situ photoemission spectroscopy and density functional theory of the Sr Zintl template for oxide heteroepitaxy on Si(001). J Vac Sci Technol B, 31, 04D107(2013).

    [164] G Koster, G Rijnders. In situ characterization of thin film growth. Woodhead Publishing Limited(2011).

    [165] S Chatterjee, S H Sung, D J Baek et al. Epitaxial growth and electronic properties of mixed valence YbAl3 thin films. J Appl Phys, 120, 035105(2016).

    [166] M Kanagaraj, Y Z Sun, J A Ning et al. Topological quantum weak antilocalization limit and anomalous Hall effect in semimagnetic Bi2–xCrxSe3/Bi2Se3–yTey heterostructure. Mater Res Express, 7, 016401(2020).

    [167] Y C Yang, Z T Liu, J S Liu et al. High-resolution ARPES endstation for in situ electronic structure investigations at SSRF. Nucl Sci Tech, 32, 31(2021).

    [168] S Chatterjee, J P Ruf, H I Wei et al. Lifshitz transition from valence fluctuations in YbAl3. Nat Commun, 8, 852(2017).

    [169] Y Gong, K J Zhu, Z Li et al. Experimental evidence of the thickness- and electric-field-dependent topological phase transitions in topological crystalline insulator SnTe(111) thin films. Nano Res, 11, 6045(2018).

    [170] P Xiang, J S Liu, M Y Li et al. In situ electronic structure study of epitaxial niobium thin films by angle-resolved photoemission spectroscopy. Chin Phys Lett, 34, 077402(2017).

    [171] T Zhou, M Y Tong, Y Zhang et al. Topological phase transition in Sb-doped Mg3Bi2 monocrystalline thin films. Phys Rev B, 103, 125405(2021).

    [172] Y Liu, H P Nair, J P Ruf et al. Revealing the hidden heavy Fermi liquid in CaRuO3. Phys Rev B, 98, 041110(2018).

    [173] Z C Huang, Y J Pu, H C Xu et al. Electronic structure and superconductivity of single-layer FeSe on Nb: SrTiO3/LaAlO3 with varied tensile strain. 2D Mater, 3, 014005(2016).

    [174] G J P Abreu, R Paniago, H D Pfannes. Growth of ultra-thin FeO(100) films on Ag(100): A combined XPS, LEED and CEMS study. J Magn Magn Mater, 349, 235(2014).

    [175] G D Soria, K Freindl, J E Prieto et al. Growth and characterization of ultrathin cobalt ferrite films on Pt(111). Appl Surf Sci, 586, 152672(2022).

    [176] N Khalid, J Y Kim, A Ionescu et al. Structure and magnetic properties of an epitaxial Fe(110)/MgO(111)/GaN(0001) heterostructure. J Appl Phys, 123, 103901(2018).

    [177] Y P Li, H Q Wang, K Ibrahim et al. Interfacial electronic states of misfit heterostructure between hexagonal ZnO and cubic NiO. Phys Rev Materials, 4, 124601(2020).

    [178] A Seiler, O Bauder, S Ibrahimkutty et al. Growth and structure characterization of EuSi2 films and nanoislands on vicinal Si(001) surface. J Cryst Growth, 407, 74(2014).

    [179] A S Kilian, F Bernardi, A Pancotti et al. Atomic structure of Cr2O3/Ag(111) and Pd/Cr2O3/Ag(111) surfaces: A photoelectron diffraction investigation. J Phys Chem C, 118, 20452(2014).

    [180] S Madisetti, V Tokranov, A Greene et al. Growth of strained InGaSb quantum wells for p-FET on Si: Defects, interfaces, and electrical properties. J Vac Sci Technol B, 32, 051206(2014).

    [181] C M Zhang, K Alberi, C Honsberg et al. Investigation of GaAs surface treatments for ZnSe growth by molecular beam epitaxy without a buffer layer. Appl Surf Sci, 549, 149245(2021).

    [182] N G Galkin, K N Galkin, A V Tupkalo et al. A low temperature growth of Ca silicides on Si(100) and Si(111) substrates: Formation, structure, optical properties and energy band structure parameters. J Alloys Compd, 813, 152101(2020).

    [183] R Peng, H C Xu, M Xia et al. Tuning the dead-layer behavior of La0.67Sr0.33MnO3/SrTiO3 via interfacial engineering. Appl Phys Lett, 104, 081606(2014).

    [184] C C Fan, Z T Liu, S H Cai et al. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices. AIP Adv, 7, 085307(2017).

    [185] R Lingaparthi, N Dharmarasu, K Radhakrishnan et al. In-situ stress evolution and its correlation with structural characteristics of GaN buffer grown on Si substrate using AlGaN/AlN/GaN stress mitigation layers for high electron mobility transistor applications. Thin Solid Films, 708, 138128(2020).

    [186] R Aidam, E Diwo, N Rollbühler et al. Strain control of AlGaN/GaN high electron mobility transistor structures on silicon (111) by plasma assisted molecular beam epitaxy. J Appl Phys, 111, 114516(2012).

    [187] M Levillayer, A Arnoult, I Massiot et al. As-grown InGaAsN subcells for multijunction solar cells by molecular beam epitaxy. IEEE J Photovolt, 11, 1271(2021).

    [188] C Cornille, A Arnoult, Q Gravelier et al. Links between bismuth incorporation and surface reconstruction during GaAsBi growth probed by in situ measurements. J Appl Phys, 126, 093106(2019).

    [189] D V Nechaev, O A Koshelev, V V Ratnikov et al. Effect of stoichiometric conditions and growth mode on threading dislocations filtering in AlN/c-Al2O3 templates grown by PA MBE. Superlattices Microstruct, 138, 106368(2020).

    [190] K Hoefer, C Becker, D Rata et al. Intrinsic conduction through topological surface states of insulating Bi2Te3 epitaxial thin films. Proc Natl Acad Sci USA, 111, 14979(2014).

    [191] R N Jacobs, B Pinkie, J Arias et al. In situ band-edge monitoring of Cd1−yZnyTe substrates for molecular beam epitaxy of HgCdTe. J Electron Mater, 48, 6138(2019).

    [192] Y Y Lo, M F Huang, Y C Chiang et al. Effect of indium accumulation on the characteristics of a-plane InN epi-films under different growth conditions. Thin Solid Films, 589, 322(2015).

    [193] A Mandziak, J de la Figuera, J E Prieto et al. Combining high temperature sample preparation and in situ magnetic fields in XPEEM. Ultramicroscopy, 214, 113010(2020).

    [194] V M Pereira, C N Wu, C E Liu et al. Molecular beam epitaxy preparation and in situ characterization of FeTe thin films. Phys Rev Materials, 4, 023405(2020).

    [195] A Mandziak, J de la Figuera, S Ruiz-Gómez et al. Structure and magnetism of ultrathin nickel-iron oxides grown on Ru(0001) by high-temperature oxygen-assisted molecular beam epitaxy. Sci Rep, 8, 17980(2018).

    [196] M Sawada, T Ueno, T Tagashira et al. XMCD experimental station optimized for ultrathin magnetic films at HiSOR-BL14. AIP Conference Proceedings, 1234, 939(2010).

    [197] R Forker, M Gruenewald, T Fritz. Optical differential reflectance spectroscopy on thin molecular films. Annu Rep Prog Chem, Sect C: Phys Chem, 108, 34(2012).

    [198] A W Jackson, P R Pinsukanjana, A C Gossard et al. In situ monitoring and control for MBE growth of optoelectronic devices. IEEE J Sel Top Quantum Electron, 3, 836(1997).

    [199] P Das, N N Halder, R Kumar et al. Graded barrier AlGaN/AlN/GaN heterostructure for improved 2-dimensional electron gas carrier concentration and mobility. Electron Mater Lett, 10, 1087(2014).

    [200] T Ogino, S Nishimura, J I Shirakashi. Scratch nanolithography on Si surface using scanning probe microscopy: Influence of scanning parameters on groove size. Jpn J Appl Phys, 47, 712(2008).

    [201] L Zhang, S F Shao. Image-based machine learning for materials science. J Appl Phys, 132, 100701(2022).

    [202] H T Liang, V Stanev, A G Kusne et al. Application of machine learning to reflection high-energy electron diffraction images for automated structural phase mapping. Phys Rev Materials, 6, 063805(2022).

    Chao Shen, Wenkang Zhan, Manyang Li, Zhenyu Sun, Jian Tang, Zhaofeng Wu, Chi Xu, Bo Xu, Chao Zhao, Zhanguo Wang. Development of in situ characterization techniques in molecular beam epitaxy[J]. Journal of Semiconductors, 2024, 45(3): 031301
    Download Citation