• Photonics Research
  • Vol. 10, Issue 6, 1361 (2022)
Zicheng Song1、2, Pingping Min1, Jiaqi Zhu1、4、*, Lei Yang3, and Feng Han Lin2、5、*
Author Affiliations
  • 1Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin 150080, China
  • 4e-mail: zhujq@hit.edu.cn
  • 5e-mail: linfh@shanghaitech.edu.cn
  • show less
    DOI: 10.1364/PRJ.457810 Cite this Article Set citation alerts
    Zicheng Song, Pingping Min, Jiaqi Zhu, Lei Yang, Feng Han Lin. Wideband diffusion metabsorber for perfect scattering field reduction[J]. Photonics Research, 2022, 10(6): 1361 Copy Citation Text show less
    References

    [1] N. Seyhan. Electromagnetic pollution and our health. Noro Psikiyatr Ars., 47, 158-161(2010).

    [2] O. Genc, M. Bayrak, E. Yaldiz. Analysis of the effects of GSM frequency band to electromagnetic pollution in the RF spectrum. Prog. Electromagn. Res., 101, 17-32(2010).

    [3] M. A. A. Frah, V. V. Belyaev. Parameters of electromagnetic pollution from different sources and their hazard impact. J. Phys. Conf. Ser., 1309, 012013(2019).

    [4] A. Lerchl. Electromagnetic pollution: another risk factor for infertility, or a red herring?. Asian J. Androl., 15, 201-203(2013).

    [5] P. Su, Y. Zhao, S. Jia, W. Shi, H. Wang. An ultra-wideband and polarization-independent metasurfaces for RCS reduction. Sci. Rep., 6, 20387(2016).

    [6] W. Li, T. Wu, W. Wang, P. Zhai, J. Guan. Broadband patterned magnetic microwave absorber. J. Appl. Phys., 116, 044110(2014).

    [7] M. Moccia, S. Liu, R. Y. Wu, G. Castaldi, A. Andreone, T. J. Cui, V. Galdi. Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design. Adv. Opt. Mater., 5, 1700455(2017).

    [8] Y. Okano, S. Ogino, K. Ishikawa. Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system. IEEE Trans. Microw. Theory Tech., 60, 2456-2464(2012).

    [9] C. Zhang, Q. Cheng, J. Yang, J. Zhao, T. J. Cui. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett., 110, 143511(2017).

    [10] H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, S. A. Ramakrishna. Transparent broadband metamaterial absorber based on resistive films. J. Appl. Phys., 122, 105105(2017).

    [11] Y. Wu, H. Lin, J. Xiong, J. Hou, R. Zhou, F. Deng, R. Tang. A broadband metamaterial absorber design using characteristic modes analysis. J. Appl. Phys., 129, 134902(2021).

    [12] Y. Chen, K. Chen, D. Zhang, S. Li, Y. Xu, X. Wang, S. Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels. Photon. Res., 9, 1391-1396(2021).

    [13] Z. Yao, S. Xiao, Y. Li, B. Wang. On the design of wideband absorber based on multilayer and multiresonant FSS array. IEEE Antennas Wireless Propag. Lett., 20, 284-288(2021).

    [14] Z. Song, J. Zhu, L. Yang, P. Min, F. H. Lin. Wideband metasurface absorber (metabsorber) using characteristic mode analysis. Opt. Express, 29, 35387-35399(2021).

    [15] Z. Song, P. Min, L. Yang, J. Zhu, F. H. Lin. A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas Wireless Propag. Lett..

    [16] S. Lai, Y. Wu, X. Zhu, W. Gu, W. Wu. An optically transparent ultrabroadband microwave absorber. IEEE Photon. J., 9, 5503310(2017).

    [17] Z. Song, P. Min, L. Yang, J. Zhu. High optical transparent wideband microwave absorber. IEEE International Conference on Electronic Information and Communication Technology (ICEICT), 391-393(2021).

    [18] K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, Y. Svirko. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep., 4, 7191(2014).

    [19] R. Deng, K. Zhang, M. Li, L. Song, T. Zhang. Targeted design, analysis and experimental characterization offlexible microwave absorber for window application. Mater. Des., 162, 119-129(2019).

    [20] T. Jang, H. Youn, Y. J. Shin, L. J. Guo. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photon., 1, 279-284(2014).

    [21] P. Min, Z. Song, L. Yang, V. G. Ralchenko, J. Zhu. Optically transparent flexible broadband metamaterial absorber based on topology optimization design. Micromachines, 12, 1419(2021).

    [22] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. J. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photon. Res., 7, 478-485(2019).

    [23] D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, J. Guan. Optically transparent broadband microwave absorbing metamaterial for standing-up closed-loop resonators. Adv. Opt. Mater., 5, 1700109(2017).

    [24] Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, S. Qu. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Opt. Express, 26, 15665-15674(2018).

    [25] P. Min, Z. Song, L. Yang, B. Dai, J. Zhu. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt. Express, 28, 19518-19530(2020).

    [26] C. Zhang, X. Y. Cao, J. Gao, S. J. Li, H. H. Yang, T. Li. Realization of entire-space electromagnetic wave manipulation with multifunctional metasurface. AIP Adv., 9, 015322(2019).

    [27] W. Chen, C. A. Balanis, C. R. Birtcher. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Trans. Antennas Propag., 63, 2636-2645(2015).

    [28] J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, T. J. Cui. Fast design of broadband terahertz diffusion metasurfaces. Opt. Express, 25, 1050-1061(2017).

    [29] K. Chen, W. Guo, G. Ding, J. Zhao, T. Jiang, Y. Feng. Binary geometric phase metasurface for ultra-wideband microwave diffuse scatterings with optical transparency. Opt. Express, 28, 12638-12649(2020).

    [30] F. Costa, A. Monorchio, G. Manara. Wideband scattering and diffusion by using diffraction of periodic surfaces and optimized cell geometries. Sci. Rep., 6, 25458(2016).

    [31] J. Zhao, C. Zhang, Q. Cheng, J. Yang, T. J. Cui. An optically transparent metasurface for broadband microwave antireflection. Appl. Phys. Lett., 112, 073504(2018).

    [32] L. Bao, Q. Ma, G. D. Bai, H. B. Jing, R. Y. Wu, X. Fu, C. Yang, J. Wu, T. J. Cui. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Appl. Phys. Lett., 113, 063502(2018).

    [33] T. Li, K. Chen, G. Ding, J. Zhao, T. Jiang, Y. Feng. Optically transparent metasurface Salisbury screen with wideband microwave absorption. Opt. Express, 26, 34384-34395(2018).

    [34] C. Ji, C. Huang, X. Zhang, J. Yang, J. Song, X. Luo. Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms. Opt. Express, 27, 23368-23377(2019).

    [35] J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, Y. Feng. Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements. Opt. Express, 24, 27849-27857(2016).

    [36] K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, B. Zhu. Coding metasurface for broadband microwave scattering reduction with optical transparency. Opt. Express, 25, 5571-5579(2017).

    [37] https://www.cst.com. https://www.cst.com

    [38] J. M. Johnson, Y. Rahmat-Samii. Genetic algorithms in engineering electromagnetics. IEEE Antennas Propag. Mag., 39, 7-25(1997).

    [39] D. S. Weile, E. Michielssen. Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans. Antennas Propag., 45, 343-353(1997).

    [40] T. J. Cui, S. Liu, L. L. Li. Information entropy of coding metasurface. Light Sci. Appl., 5, e16172(2016).

    [41] C. A. Balanis. Antenna Theory: Analysis and Design(2016).

    [42] A. D. Brown. Electronically Scanned Arrays MATLAB® Modeling and Simulation(2012).

    Zicheng Song, Pingping Min, Jiaqi Zhu, Lei Yang, Feng Han Lin. Wideband diffusion metabsorber for perfect scattering field reduction[J]. Photonics Research, 2022, 10(6): 1361
    Download Citation