• Acta Optica Sinica
  • Vol. 43, Issue 19, 1900001 (2023)
Jun Qiu1,2, Guanghua Yang1, Jing Li1,2,*, Zengxiong Lu1,2, and Minxia Ding1
Author Affiliations
  • 1Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS230637 Cite this Article Set citation alerts
    Jun Qiu, Guanghua Yang, Jing Li, Zengxiong Lu, Minxia Ding. Development and Challenges of Lithographical Alignment Technologies[J]. Acta Optica Sinica, 2023, 43(19): 1900001 Copy Citation Text show less
    References

    [1] Sharma E, Rathi R, Misharwal J et al. Evolution in lithography techniques: microlithography to nanolithography[J]. Nanomaterials, 12, 2754(2022).

    [2] Li Y L, Liu X H, Wu Q. Evolution and updates of advanced photolithography technology[J]. Laser & Optoelectronics Progress, 59, 0922006(2022).

    [3] Wei Y Y[M]. Theory and application of advanced lithography for VLSI(2016).

    [4] Shchegrov A V, Leray P, Paskover Y et al. On product overlay metrology challenges in advanced nodes[J]. Proceedings of SPIE, 11325, 113251P(2020).

    [5] Orji N G, Badaroglu M, Barnes B M et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 1, 532-547(2018).

    [6] Bunday B D, Bello A, Solecky E et al. 7/5 nm logic manufacturing capabilities and requirements of metrology[J]. Proceedings of SPIE, 10585, 105850I(2018).

    [7] Li Y M, Yang L, Wang X H et al. Overlay metrology for lithography machine[J]. Laser & Optoelectronics Progress, 59, 0922023(2022).

    [8] Wang X Z, Dai F Z[M]. Integrated circuit and lithographic tool(2020).

    [9] Yao H M, Hu S, Xing T W[M]. Optical projection exposure micro-nano processing technology, 83(2006).

    [10] Zhu T, Li Y Q. Design and simulation of a wafer stage for extreme ultra violet lithography[J]. Nanotechnology and Precision Engineering, 3, 314-318(2005).

    [11] Jonckheere R, Lorusso G F, Goethals A M et al. Full Field EUV Lithography Turning into a Reality at JMEC[J]. Proceedings of SPIE, 6607, 66070H(2007).

    [12] Yuan Q Y, Wang X Z. Recent development of international mainstream lithographic tools[J]. Laser & Optoelectronics Progress, 44, 57-64(2007).

    [13] Saitoh K, Ohsawa H, Sentoku K et al. Overlay accuracy of Canon synchrotron radiation stepper XFPA for 0.15 μm process[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14, 4303-4307(1996).

    [14] Navarro R, Keij S, Boef A D et al. Extended ATHENATM alignment performance and application for the 100 nm technology node[J]. Proceedings of SPIE, 4344, 682-694(2001).

    [15] Miyasaka M, Saito H, Tamura T et al. The application of SMASH alignment system for 65-55-nm logic devices[J]. Proceedings of SPIE, 6518, 65180H(2007).

    [16] Zhu J P, Hu S, Yu J S et al. Alignment scheme research based on equivalent overlapped gratings for reflective lithography alignment[J]. Chinese Journal of Lasers, 39, 0909001(2012).

    [17] Verstappen L, Mos E, Wardenier P et al. Holistic overlay control for multi-patterning process layers at the 10nm and 7nm nodes[J]. Proceedings of SPIE, 9778, 97781Y(2016).

    [18] Gorhad K, Sharoni O, Dmitriev V et al. Co-optimization of RegC and TWINSCAN corrections to improve the intra-field on-product overlay performance[J]. Proceedings of SPIE, 9778, 97783D(2016).

    [19] Mulkens J, Hinnen P C, Kubis M et al. Holistic optimization architecture enabling sub-14-nm projection lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13, 011006(2014).

    [20] de Graaf R, Weichselbaum S, Droste R et al. NXT: 1980Di immersion scanner for 7 nm and 5 nm production nodes[J]. Proceedings of SPIE, 9780, 978011(2016).

    [21] Du J Y, Dai F Z, Bu Y et al. Alignment technique using Moire fringes based on self-coherence in lithographic tools[J]. Chinese Journal of Lasers, 44, 1204006(2017).

    [22] He F, Wu Z M, Wang J et al. Nikon stepper alignment system and analysis of alignment modeling[J]. Equipment for Electronic Products Manufacturing, 38, 8-12, 18(2009).

    [23] Aoki A, Yokota M. Method and apparatus for exposure process[P].

    [24] Luo T. Research on laser step alignment system of nikon stepper[J]. Electronics & Packaging, 19, 44-47(2019).

    [25] Kobayashi M, Yashiko A. Exposing equipment, exposing method, and manufacturing method for element[P].

    [27] Flanders D C, Smith H I, Austin S. A new interferometric alignment technique[J]. Applied Physics Letters, 31, 426-428(1977).

    [28] Mizutani H, Nishi K J. Aligning device for exposure apparatus[P].

    [29] Ota K, Komatsu K. Projection scanning exposure apparatus with synchronous mask/wafer alignment system[P].

    [30] Ota K, Inoue J. Position transducer and exposure apparatus with same[P].

    [31] Ayata N, Yamada Y. Mask aligner with a wafer position detecting device[P].

    [32] Uda K, Oda K, Ayata N. Alignment and exposure apparatus[P].

    [33] Omata T. Projection exposure apparatus[P].

    [34] Sato H. Exposure apparatus and device manufacturing method[P].

    [35] Guo Q T, Li B. Analysis on breakthrough path of lithography in China based on development of lithography industry in the world[J]. Application of IC, 38, 1-3(2021).

    [36] Zong N, Hu W M, Wang Z M et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 13, 28-42(2020).

    [37] Chen B Q. Lithography technology during the past six decades[J]. Laser & Optoelectronics Progress, 59, 0922031(2022).

    [38] Jacobs B A J, Kramer P. Apparatus for aligning a mask with respect to a semiconductor substrate[P].

    [39] den Boef A J. Optical metrology of semiconductor wafers in lithography[J]. Proceedings of SPIE, 8769, 876907(2013).

    [40] Wittekoek S, van den Brink M A, Linders H F D et al. Deep-UV wafer stepper with through-the-lens wafer to reticle alignment[J]. Proceedings of SPIE, 1264, 534-547(1990).

    [41] Koren R N Y, Simons H J G, Jeunink A B. Alignment system and methods for lithographic systems using at least two wavelengths[P].

    [42] Wittekoek S, van der Werf J, George R A. Phase gratings as wafer stepper alignment marks for all process layers[J]. Proceedings of SPIE, 0538, 24-31(1985).

    [43] Opitz J, Laidler D W. Comparison of ATHENATM and TTL alignment capability in product wafers[J]. Proceedings of SPIE, 4689, 852-862(2002).

    [44] Rivera G, Rozzoni L, Castellana E et al. Overlay performance on tungsten CMP layers using the ATHENA alignment system[J]. Proceedings of SPIE, 3998, 428-440(2000).

    [45] Bornebroek F, Burghoorn J, Greeneich J S et al. Overlay performance in advanced processes[J]. Proceedings of SPIE, 4000, 520-531(2000).

    [46] Pugh G M, Giorgi M R. Evaluation of ASML ATHENA alignment system on Intel front-end overlay processes[J]. Proceedings of SPIE, 4689, 286-294(2002).

    [47] Huijbregste J, van Haren R J F, Jeunink A et al. Overlay performance with advanced ATHENA alignment strategies[J]. Proceedings of SPIE, 5038, 918-928(2003).

    [48] Laidler D, Megens H, Lalbahadoersing S et al. Advances in process overlay: ATHENAalignment system performance on critical process layers[J]. Proceedings of SPIE, 4689, 397-408(2002).

    [49] Neijzen J H M, Morton R D, Dirksen P et al. Improved wafer stepper alignment performance using an enhanced phase grating alignment system[J]. Proceedings of SPIE, 3677, 382-394(1999).

    [50] Seltmann R, Demmerle W, Staples M et al. Overlay budget considerations for an all-scanner fab[J]. Proceedings of SPIE, 4000, 896-904(2000).

    [51] Cui Y T, Goodwin F, van Haren R. Segmented alignment mark optimization and signal strength enhancement for deep trench process[J]. Proceedings of SPIE, 5375, 1265-1277(2004).

    [52] Kreuzer J L. Self referencing mark independent alignment sensor[P].

    [53] Keij S, Setija I, van der Zouw G et al. Advances in phase-grating-based wafer alignment systems[J]. Proceedings of SPIE, 5752, 948-960(2005).

    [54] van Schoot J, van Setten E, Troost K et al. High-NA EUV lithography exposure tool: program progress[J]. Proceedings of SPIE, 11323, 1132307(2020).

    [55] Leray P, Laidler D, Cheng S et al. Achieving optimum diffraction based overlay performance[J]. Proceedings of SPIE, 7638, 76382B(2010).

    [56] Bhattacharyya K, den Boef A, Storms G et al. A study of swing-curve physics in diffraction-based overlay[J]. Proceedings of SPIE, 9778, 97781I(2016).

    [57] Menchtchikov B, Socha R, Raghunathan S et al. Computational scanner wafer mark alignment[J]. Proceedings of SPIE, 10147, 101471C(2017).

    [58] Menchtchikov B, Socha R, Zheng C M et al. Reduction in overlay error from mark asymmetry using simulation, ORION, and alignment models[J]. Proceedings of SPIE, 10587, 105870C(2018).

    [59] Verhoeven E, Schuurhuis R, Mastenbroek M et al. 0.33 NA EUV systems for high-volume manufacturing[J]. Proceedings of SPIE, 11609, 1160908(2021).

    [60] Leray P. Metrology challenges for in-line process control[J]. Proceedings of SPIE, 10145, 1014503(2017).

    [61] Kim Y S, Hwang Y S, Jung M R et al. Improving full-wafer on-product overlay using computationally designed process-robust and device-like metrology targets[J]. Proceedings of SPIE, 9424, 942414(2015).

    [62] Socha R. Holistic method for reducing overlay error at the 5 nm node and beyond[J]. Proceedings of SPIE, 11328, 113280V(2020).

    [63] Ma J G, Yu M, Lambregts C et al. Holistic alignment approach for on-product overlay improvement on DUV lithography process with combined solutions[J]. Proceedings of SPIE, 11327, 113270S(2020).

    [64] Jeong I H, Kim H S, Kong Y O et al. Improved wafer alignment model algorithm for better on-product overlay[J]. Proceedings of SPIE, 10961, 109610A(2019).

    [65] Megens H, Brinkhof R, Aarts I et al. Holistic feedforward control for the 5 nm logic node and beyond[J]. Proceedings of SPIE, 10961, 109610K(2019).

    [66] Schmitt-Weaver E, Willems L, van der Laan H et al. An integrated approach to holistic metrology qualification for multi-patterning process layers: Am: advanced metrology[C], 413-418(2016).

    [67] Chen X M, Preil M E, Le Goff-Dussable M et al. Automated method for overlay sample plan optimization based on spatial variation modeling[J]. Proceedings of SPIE, 4344, 257-266(2001).

    [68] Lee H, Han S J, Kim M et al. In-depth analysis of sampling optimization methods[J]. Proceedings of SPIE, 9778, 97781E(2016).

    [69] Wildenberg J S, Mos E C. Method of determining a measurement subset of metrology points on a substrate, associated apparatus and computer program[P].

    [70] Chue C F, Chiou T B, Huang C Y et al. Optimization of alignment/overlay sampling and marker layout to improve overlay performance for double patterning technology[J]. Proceedings of SPIE, 7520, 75200G(2009).

    [71] Murakami S, Matsuura T, Ogawa M et al. Laser step alignment for a wafer stepper[J]. Proceedings of SPIE, 0538, 9-16(1985).

    [72] Nagayama T, Nakajima S, Sugaya A et al. New method to reduce alignment error by optical system[J]. Proceedings of SPIE, 5038, 849-860(2003).

    [73] Wan W F. Analysis of alignment mode of NSR2205I14 mask aligner[J]. Plant Maintenance Engineering, 99-100(2018).

    [74] Ge Y P. Study on phase grating alignment technology[D], 4-6(2008).

    [75] Mishima K. Detection apparatus and exposure apparatus using the same[P].

    [76] Mishima K. Position detection method and apparatus, and exposure method and apparatus[P].

    [77] Tanaka H. Position detection apparatus, position detection method, exposure apparatus, device manufacturing method, and substrate[P].

    [78] Tanaka H. Alignment mark, alignment apparatus and method, exposure apparatus, and device manufacturing method[P].

    [79] Li Y F, Wang H J, Wei X Z et al. Alignment system with multi-grating mark for lithographic apparatus[J]. Micronanoelectronic Technology, 46, 494-497(2009).

    [80] Zhou S L, Hu S, Fu Y Q et al. Moiré interferometry with high alignment resolution in proximity lithographic process[J]. Applied Optics, 53, 951-959(2014).

    [81] Zhu J P, Hu S, Yu J S et al. Four-quadrant gratings Moiré fringe alignment measurement in proximity lithography[J]. Optics Express, 21, 3463-3473(2013).

    [82] Si X C, Tong J M, Tang Y et al. Lithography alignment technology based on two-dimensional Ronchi grating[J]. Chinese Journal of Lasers, 42, 0910001(2015).

    [83] Si X C, Tang Y, Hu S et al. High-precision alignment technique with large measurement range based on composite gratings[J]. Acta Optica Sinica, 36, 0105003(2016).

    [84] Di C L, Zhu J P, Yan W et al. A modified alignment method based on four-quadrant-grating moiré for proximity lithography[J]. Optik, 125, 4868-4872(2014).

    [85] Di C L, Yan W, Hu S et al. Moiré-based absolute interferometry with large measurement range in wafer-mask alignment[J]. IEEE Photonics Technology Letters, 27, 435-438(2015).

    [86] Zhu J P, Hu S, Zhou P et al. Experimental study of Talbot imaging Moiré-based lithography alignment method[J]. Optics and Lasers in Engineering, 58, 54-59(2014).

    [87] Zhu J P, Hu S, You Z S et al. Gap-optimized Moiré phase imaging alignment for proximity lithography[J]. Optical Engineering, 54, 017105(2015).

    [88] Tao Z, Cui J W, Tan J B. Simultaneous multi-channel absolute position alignment by multi-order grating interferometry[J]. Optics Express, 24, 802-816(2016).

    [89] Tao Z, Tan J B, Cui J W. Linear response, multi-order grating interferometry using a reversal shearing imaging system[J]. Optics Letters, 40, 4552-4555(2015).

    [90] Du J Y, Dai F Z, Bu Y et al. Calibration method of overlay measurement error caused by asymmetric mark[J]. Applied Optics, 57, 9814-9821(2018).

    [91] Du J Y, Dai F Z, Wang X Z. Calibration method for alignment error caused by asymmetric deformation of mark and its application in overlay measurement[J]. Chinese Journal of Lasers, 46, 0704004(2019).

    [92] Yang G H, Wang Y, Li J et al. Diffraction efficiency of enhanced phase grating[J]. Acta Optica Sinica, 41, 1205001(2021).

    [93] Yang G H, Li J, Wang Y et al. Analytic design of segmented phase grating for optical sensing in high-precision alignment system[J]. Sensors, 21, 3805(2021).

    [94] Xu M N, Lu Z X, Qi Y J et al. Influence of beam polarization on contrast of self-referencing interference signal[J]. Laser & Optoelectronics Progress, 58, 2326002(2021).

    [95] Yang G H, Wang Y, Li J et al. Effect of phase grating asymmetry on position measurement accuracy[J]. Acta Optica Sinica, 41, 1905001(2021).

    [96] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275, 376(2017).

    [97] Liao K, Gan T Y, Hu X Y et al. On-chip nanophotonic devices based on dielectric metasurfaces[J]. Acta Optica Sinica, 41, 0823001(2021).

    [98] Remnev M A, Klimov V V. Metasurfaces: a new look at Maxwell’s equations and new ways to control light[J]. Physics-Uspekhi, 61, 157-190(2018).

    [99] Zhang Z P, Yang X F. Application of laser heterodyne interference technology in lithography[J]. Laser & Optoelectronics Progress, 59, 0922017(2022).