• Photonics Research
  • Vol. 11, Issue 5, 773 (2023)
Liu Yang1, Yongyong Zhuang1、2、3、*, Yifan Zhang1, Yaojing Zhang2, Shuangyou Zhang2, Zhuo Xu1, Pascal Del’Haye2, and Xiaoyong Wei1、4、*
Author Affiliations
  • 1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 2Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
  • 3e-mail: xiaozhuang235@163.com
  • 4e-mail: wdy@xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.484403 Cite this Article Set citation alerts
    Liu Yang, Yongyong Zhuang, Yifan Zhang, Yaojing Zhang, Shuangyou Zhang, Zhuo Xu, Pascal Del’Haye, Xiaoyong Wei. Electromagnetically induced transparency-like effect in a lithium niobate resonator via electronic control[J]. Photonics Research, 2023, 11(5): 773 Copy Citation Text show less
    References

    [1] S. E. Harris, J. E. Field, A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [2] L. V. Hau, S. E. Harri, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397, 594-598(1999).

    [3] M. A. Maynard, R. Bouchez, J. Lugani, F. Bretenaker, F. Goldfarb, E. Brion. Time-dependent phase shift of a retrieved pulse in off-resonant electromagnetically-induced-transparency-based light storage. Phys. Rev. A, 92, 053803(2015).

    [4] B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 111, 14657-14662(2014).

    [5] K. Di, C. Xie, J. Zhang. Coupled-resonator-induced transparency with a squeezed vacuum. Phys. Rev. Lett., 106, 153602(2011).

    [6] S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).

    [7] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [8] M. F. Yanik, W. Suh, Z. Wang, S. Fan. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett., 93, 233903(2004).

    [9] Y. Yang, S. Saurabh, J. Ward, S. N. Chormaic. Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators. Opt. Lett., 40, 1834-1837(2015).

    [10] Y. Wang, K. Zhang, S. Zhou, Y. H. Wu, M. B. Chi, P. Hao. Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator. Opt. Lett., 41, 1825-1828(2016).

    [11] S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [12] Y. Xiao, L. He, J. Zhu, L. Yang. Electromagnetically induced transparency like effect in a single polydimethylsiloxane coated silica microtoroid. Appl. Phys. Lett., 94, 231115(2009).

    [13] Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, L. Feng. Tunable topological charge vortex microlaser. Science, 368, 760-763(2020).

    [14] S. Zhang, T. Bi, G. N. Ghalanos, N. P. Moroney, L. D. Bino, P. Del’Haye. Dark-bright soliton bound states in a microresonator. Phys. Rev. Lett., 128, 033901(2022).

    [15] A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, K. Sasaki. Fano resonance in a multimode tapered fiber coupled with a microspherical cavity. Appl. Phys. Lett., 86, 261106(2005).

    [16] S. Guo, Y. Zhang, L. Wu, M. Ye, X. Lin. Transition between coupled-resonator-induced transparency and absorption. Phys. Rev. A, 103, 033510(2021).

    [17] X. Huang, T. Wang, C. Wang. Electromagnetically induced transparency and absorption in directly coupled whispering-gallery mode microcavities. IEEE Photon. J., 14, 6515508(2022).

    [18] Y. Liu, B. Li, Y. Xiao. Electromagnetically induced transparency in optical microcavities. Nanophotonics, 6, 789-811(2017).

    [19] X. Liu, Q. Lu, L. Fu, X. Chen, X. Wu, S. Xie. Coupled-mode induced transparency via Ohmic heating in a single polydimethylsiloxane-coated microbubble resonator. Opt. Express, 28, 10705-10713(2020).

    [20] R. R. Xie, G. Q. Qin, H. Zhang, M. Wang, G. Q. Li, D. Ruan, G. L. Long. Phase-controlled dual-wavelength resonance in a self-coupling whispering-gallery-mode microcavity. Opt. Lett., 46, 773-776(2021).

    [21] J. Kim, M. C. Kuzyk, K. Han, H. Wang, G. Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys., 11, 275-280(2015).

    [22] B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y. Chen, Y. Li, Q. Gong. Experimental observation of Fano resonance in a single whispering-gallery microresonator. Appl. Phys. Lett., 98, 021116(2011).

    [23] C. Dong, C. Zou, Y. Xiao, J. Cui, Z. Han, G. Guo. Modified transmission spectrum induced by two-mode interference in a single silica microsphere. J. Phys. B, 42, 215401(2009).

    [24] X. Jin, Y. Dong, K. Wang. Stable controlling of electromagnetically induced transparency-like in a single quasi-cylindrical microresonator. Opt. Express, 24, 29773-29780(2016).

    [25] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [26] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. A, 6, 014002(2016).

    [27] A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, H. G. L. Schwefel. Efficient microwave to optical photon conversion: an electro-optical realization. Optica, 3, 597-604(2016).

    [28] H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, Q. Lin. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett., 42, 3267-3270(2017).

    [29] G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, C. Marquardt. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern. Opt. Express, 22, 30795-30806(2014).

    [30] L. Yang, Y. Zhuang, W. Zhao, X. Liu, Q. Hu, Z. Xu, X. Wei. Q-factor modification of LN based WGM resonator. Mater. Lett., 308, 131292(2022).

    [31] A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, L. Maleki. Photorefractive effects in magnesium doped lithium niobate whispering gallery mode. Appl. Phys. Lett., 88, 241909(2006).

    Liu Yang, Yongyong Zhuang, Yifan Zhang, Yaojing Zhang, Shuangyou Zhang, Zhuo Xu, Pascal Del’Haye, Xiaoyong Wei. Electromagnetically induced transparency-like effect in a lithium niobate resonator via electronic control[J]. Photonics Research, 2023, 11(5): 773
    Download Citation