• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016010 (2023)
Kai Qu, Ke Chen*, Qi Hu, Junming Zhao, Tian Jiang, and Yijun Feng*
Author Affiliations
  • Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • show less
    DOI: 10.1117/1.APN.2.1.016010 Cite this Article Set citation alerts
    Kai Qu, Ke Chen, Qi Hu, Junming Zhao, Tian Jiang, Yijun Feng. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing[J]. Advanced Photonics Nexus, 2023, 2(1): 016010 Copy Citation Text show less

    Abstract

    Recently, the metasurfaces for independently controlling the wavefront and amplitude of two orthogonal circularly polarized electromagnetic (EM) waves have been demonstrated to open a way toward spin-multiplexing compact metadevices. However, these metasurfaces are mostly restricted to a single operation frequency band. The main challenge to achieving multiple frequency manipulations stems from the complicated and time-consuming design caused by multifrequency cross talk. To solve this problem, we propose a deep-learning-assisted inverse design method for designing a dual-spin/frequency metasurface with flexible multiplexing of off-axis vortices. By analyzing the cross talk between different spin/frequency channels based on the deep-learning method, we established the internal mapping relationship between the physical parameters of a meta-atom and its phase responses in multichannels, realizing the rapid inverse design of the spin/frequency multiplexing EM device. As a proof of concept, we demonstrated in the microwave region a dual-frequency arbitrary spin-to-orbit angular momentum converter, a dual-frequency off-axis vector vortex multiplexer, and a large-capacity (16-channel) vortex beam generator. The proposed method may provide a compact and efficient platform for the multiplexing of vortices, which may further stimulate their applications in wireless communication and quantum information science.
    Supplementary Materials
    Kai Qu, Ke Chen, Qi Hu, Junming Zhao, Tian Jiang, Yijun Feng. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing[J]. Advanced Photonics Nexus, 2023, 2(1): 016010
    Download Citation