• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016010 (2023)
Kai Qu, Ke Chen*, Qi Hu, Junming Zhao, Tian Jiang, and Yijun Feng*
Author Affiliations
  • Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • show less
    DOI: 10.1117/1.APN.2.1.016010 Cite this Article Set citation alerts
    Kai Qu, Ke Chen, Qi Hu, Junming Zhao, Tian Jiang, Yijun Feng. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing[J]. Advanced Photonics Nexus, 2023, 2(1): 016010 Copy Citation Text show less
    References

    [1] G. Milione et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [3] J. He et al. Generation and evolution of the terahertz vortex beam. Opt. Express, 21, 20230-20239(2013).

    [4] F. E. Mahmouli, S. D. Walker. 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel. IEEE Wireless Commun. Lett., 2, 223-226(2013).

    [5] Y. Yan et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [6] S. Chen et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci. Appl., 10, 222(2021).

    [7] H. Ren et al. Metasurface orbital angular momentum holography. Nat. Commun., 10, 2986(2019).

    [8] Q. Xiao et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [9] G. B. Xavier, G. Lima. Quantum information processing with space-division multiplexing optical fibres. Commun. Phys., 3, 9(2020).

    [10] K. Huang et al. Vector-vortex Bessel–Gauss beams and their tightly focusing properties. Opt. Lett., 36, 888-890(2011).

    [11] N. Bhebhe et al. A vector holographic optical trap. Sci. Rep., 8, 17387(2018).

    [12] D. Haefner, S. Sukhov, A. Dogariu. Spin Hall effect of light in spherical geometry. Phys. Rev. Lett., 102, 123903(2009).

    [13] M. R. Akram et al. Photon spin Hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag., 67, 4650-4658(2019).

    [14] N. Shitrit et al. Optical spin Hall effects in plasmonic chains. Nano Lett., 11, 2038-2042(2011).

    [15] Y. Liu et al. Photonic spin hall effect in metasurfaces: a brief review. Nanophotonics, 6, 51-70(2017).

    [16] P. J. Lavery Martin et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [17] M. Zhao et al. Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam. Opt. Lett., 41, 2549-2552(2016).

    [18] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [19] Z. H. Jiang et al. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order Poincaré sphere beams. Adv. Mater., 32, 1903983(2020).

    [20] K. Zhang et al. A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci., 10, 1015(2020).

    [21] K. Chen et al. Directional Janus metasurface. Adv. Mater., 32, 1906352(2020).

    [22] K. Chen et al. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [23] S. B. Glybovski et al. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [24] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896(2017).

    [25] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [26] S. Pancharatnam. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. – Sect. A, 44, 247-262(1956).

    [27] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401-1407(1987).

    [28] G. Ding et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion. Phys. Rev. Appl., 11, 044043(2019).

    [29] Y. Xu et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 9, 3393-3402(2020).

    [30] J. Shabanpour. Programmable anisotropic digital metasurface for independent manipulation of dual-polarized THz waves based on a voltage-controlled phase transition of VO2 microwires. J. Mater. Chem. C, 8, 7189-7199(2020). https://doi.org/10.1039/D0TC00689K

    [31] Q. Hu et al. Arbitrary and dynamic Poincaré sphere polarization converter with a time-varying metasurface. Adv. Opt. Mater., 10, 2101915(2022).

    [32] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [33] Y. Yuan et al. Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region. Photonics Res., 7, 80-88(2019).

    [34] H.-X. Xu et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photonics, 6, 211-220(2019).

    [35] H.-X. Xu et al. Multiplexed metasurfaces: wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Adv. Mater. Technol., 5, 2070005(2020).

    [36] O. Khatib et al. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv. Funct. Mater., 31, 2101748(2021).

    [37] M. M. R. Elsawy et al. Numerical optimization methods for metasurfaces. Laser Photonics Rev., 14, 1900445(2020).

    [38] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021).

    [39] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [40] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [41] J. Peurifoy et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [42] Q. Zhang et al. Machine‐learning designs of anisotropic digital coding metasurfaces. Adv. Theor. Simul., 2, 1800132(2018).

    [43] S. An et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196-3207(2019).

    [44] L. Gao et al. A bidirectional deep neural network for accurate silicon color design. Adv. Mater., 31, 1905467(2019).

    [45] H. P. Wang et al. Deep learning designs of anisotropic metasurfaces in ultrawideband based on generative adversarial networks. Adv. Intell. Syst., 2, 2000068(2020).

    [46] R. Zhu et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat. Commun., 12, 2974(2021).

    [47] C. C. Nadell et al. Deep learning for accelerated all-dielectric metasurface design. Opt. Express, 27, 27523-27535(2019).

    [48] T. Shan et al. Coding programmable metasurfaces based on deep learning techniques. IEEE J. Emerg. Sel. Top. Circuits Syst., 10, 114-125(2020).

    [49] F. Ghorbani et al. Deep neural network-based automatic metasurface design with a wide frequency range. Sci. Rep., 11, 7102(2021).

    [50] F. Ghorbani et al. A deep learning approach for inverse design of the metasurface for dual-polarized waves. Appl. Phys. A, 127, 869(2021).

    [51] R. Zhu et al. Multiplexing the aperture of a metasurface: inverse design via deep-learning-forward genetic algorithm. J. Phys. D: Appl. Phys., 53, 455002(2020).

    [52] L. Li et al. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [53] C. Qian et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [54] C. Liu et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113-122(2022).

    [55] T. Qiu et al. Deep learning: a rapid and efficient route to automatic metasurface design. Adv. Sci., 6, 1900128(2019).

    [56] H. Taghvaee et al. Radiation pattern prediction for metasurfaces: a neural network-based approach. Sensors, 21, 2765(2021).

    [57] A. Mall et al. Fast design of plasmonic metasurfaces enabled by deep learning. J. Phys. D: Appl. Phys., 53, 49LT01(2020).

    [58] M. Diligenti, S. Roychowdhury, M. Gori. Integrating prior knowledge into deep learning, 920-923(2017).

    [59] S. Chakraborty et al. Incorporation of prior knowledge in neural network model for continuous cooling of steel using genetic algorithm. Appl. Soft Comput., 58, 297-306(2017).

    [60] S. Chen, Y. Leng, S. Labi. A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information. Comput.-Aided Civ. Infrastruct. Eng., 35, 305-321(2020).

    [61] M. Yannai et al. Spectrally interleaved topologies using geometric phase metasurfaces. Opt. Express, 26, 31031-31038(2018).

    [62] L. Yan et al. 0.2 λ0 thick adaptive retroreflector made of spin-locked metasurface. Adv. Mater., 30, 1802721(2018).

    [63] W. Yang et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector. Adv. Sci., 8, 2100885(2021).

    [64] P. Xu et al. Dual-circularly polarized spin-decoupled reflectarray with FSS-back for independent operating at Ku-/Ka-bands. IEEE Trans. Antennas Propag., 69, 7041-7046(2021).

    [65] T. Yue, Z. H. Jiang, D. H. Werner. A compact metasurface-enabled dual-band dual-circularly polarized antenna loaded with complementary split ring resonators. IEEE Trans. Antennas Propag., 67, 794-803(2019).

    [66] X. Tong et al. Dual-wideband dual-circularly-polarized shared-aperture reflectarrays with a single functional substrate for K-/Ka-band applications. IEEE Trans. Antennas Propag., 70, 5404-5417(2022).

    [67] X. Han et al. Inverse design of metasurface optical filters using deep neural network with high degrees of freedom. InfoMat, 3, 432-442(2021).

    [68] P. Liu, L. Chen, Z. N. Chen. Prior-knowledge-guided deep-learning-enabled synthesis for broadband and large phase-shift range metacells in metalens antenna. IEEE Trans. Antennas Propag., 70, 5024-5034(2022).

    [69] F. Yue et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater., 29, 1603838(2017).

    [70] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [71] A. T. O’Neil et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [72] Y. Bao, J. Ni, C.-W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).

    [73] C. Zheng et al. All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling. Adv. Opt. Mater., 9, 2002007(2021).

    [74] M. Liu et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun., 12, 2230(2021).

    [75] J. Shabanpour et al. Real-time multi-functional near-infrared wave manipulation with a 3-bit liquid crystal based coding metasurface. Opt. Express, 29, 14525-14535(2021).

    Kai Qu, Ke Chen, Qi Hu, Junming Zhao, Tian Jiang, Yijun Feng. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing[J]. Advanced Photonics Nexus, 2023, 2(1): 016010
    Download Citation