• Journal of Semiconductors
  • Vol. 40, Issue 12, 121803 (2019)
Maosong Sun1、2, Jinfeng Li1, Jicai Zhang1、2, and Wenhong Sun2、3
Author Affiliations
  • 1Department of Physics, College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
  • 2Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning 530004, China
  • 3Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
  • show less
    DOI: 10.1088/1674-4926/40/12/121803 Cite this Article
    Maosong Sun, Jinfeng Li, Jicai Zhang, Wenhong Sun. The fabrication of AlN by hydride vapor phase epitaxy[J]. Journal of Semiconductors, 2019, 40(12): 121803 Copy Citation Text show less
    References

    [1] V Avrutin, D J Silversmith, Y Mori et al. Growth of bulk GaN and AlN: progress and challenges. Proc IEEE, 98, 1302(2010).

    [2] T Paskova, D A Hanser, K R Evans. GaN substrates for III-nitride devices. Proc IEEE, 98, 1324(2010).

    [3] U K Mishra, P Parikh, Y F Wu. AlGaN/GaN HEMTs — An overview of device operation and applications. Proc IEEE, 90, 1022(2002).

    [4] V Adivarahan, W H Sun, A Chitnis et al. 250 nm AlGaN light-emitting diodes. Appl Phys Lett, 85, 2175(2004).

    [5] H Hirayama, T Yatabe, N Noguchi et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 91, 071901(2007).

    [6] R Jain, W Sun, J Yang et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett, 93, 051113(2008).

    [7] J C Zhang, Y H Zhu, T Egawa et al. Suppression of the subband parasitic peak by 1 nm i-AlN interlayer in AlGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 93, 131117(2008).

    [8] H Hirayama, S Fujikawa, N Noguchi et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 206, 1176(2009).

    [9] N Susilo, S Hagedorn, D D et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 112, 041110(2018).

    [10] V Adivarahan, S Wu, W H Sun et al. High-power deep ultraviolet light-emitting diodes based on a micro-pixel design. Appl Phys Lett, 85, 1838(2004).

    [11] W H Sun, J P Zhang, V Adivarahan et al. AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1.5 mW. Appl Phys Lett, 85, 531(2004).

    [12] J C Zhang, Y H Zhu, T Egawa et al. Quantum-well and localized state emissions in AlInGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 91, 221906(2007).

    [13] J C Zhang, Y Sakai, T Egawa. Low-temperature electroluminescence quenching of AlGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 96, 013503(2010).

    [14] M Shatalov, W H Sun, A Lunev et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 5, 082101(2012).

    [15] S X Tan, J C Zhang, T Egawa et al. Influence of quantum-well width on the electroluminescence properties of AlGaN deep ultraviolet light-emitting diodes at different temperatures. Nanoscale Res Lett, 13, 334(2018).

    [16] M Kneissl, T Kolbe, C Chua et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Tech, 26, 014036(2011).

    [17] M Yano, M Okamoto, Y K Yap et al. Growth of nitride crystals, BN, AlN and GaN by using a Na flux. Diam Relat Mater, 9, 512(2000).

    [18] Y Kangawa, R Toki, T Yayama et al. Novel solution growth method of bulk AlN using Al and Li3N solid sources. Appl Phys Express, 4, 095501(2011).

    [19] B G Wang, M J Callahan. Ammonothermal synthesis of III-nitride crystals. Cryst Growth Des, 6, 1227(2006).

    [20] G A Slack, T F Mcnelly. Growth of high-purity AlN crystals. J Cryst Growth, 34, 263(1976).

    [21] Z G Herro, D Zhuang, R Schlesser et al. Growth of AlN single crystalline boules. J Cryst Growth, 312, 2519(2010).

    [22] R T Bondokov, S G Mueller, K E Morgan et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 310, 4020(2008).

    [23] Y N Makarov, O V Avdeev, I S Barash et al. Experimental and theoretical analysis of sublimation growth of AlN bulk crystals. J Cryst Growth, 310, 881(2008).

    [24] C Hartmann, A Dittmar, J Wollweber et al. Bulk AlN growth by physical vapour transport. Semicond Sci Tech, 29, 084002(2014).

    [25] J Bai, M Dudley, W H Sun et al. Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification. Appl Phys Lett, 88, 051903(2006).

    [26] M Imura, N Fujimoto, N Okada et al. Annihilation mechanism of threading dislocations in AlN grown by growth form modification, method using V/III ratio. J Cryst Growth, 300, 136(2007).

    [27] R G Banal, M Funato, Y Kawakamia. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl Phys Lett, 92, 241905(2008).

    [28] M Takeuchi, S Ooishi, T Ohtsuka et al. Improvement of AI-polar AIN layer quality by three-stage flow-modulation metalorganic chemical vapor deposition. Appl Phys Express, 1, 021102(2008).

    [29] L S Zhang, F J Xu, J M Wang et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep-Uk, 6, 35934(2016).

    [30] D Lee, J W Lee, J Jang et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl Phys Lett, 110, 191103(2017).

    [31] H L Long, J N Dai, Y Zhang et al. High quality 10.6 μm AIN grown on pyramidal patterned sapphire substrate by MOCVD. Appl Phys Lett, 114, 042101(2019).

    [32] J A Freitas, G C B Braga, W J Moore et al. Structural and optical properties of thick freestanding GaN templates. J Cryst Growth, 231, 322(2001).

    [33] L Liu, J H Edgar. Substrates for gallium nitride epitaxy. Mat Sci Eng R, 37, 61(2002).

    [34] A Y Timoshkin, H F Bettinger, H F Schaefer. The chemical vapor deposition of aluminum nitride: Unusual cluster formation in the gas phase. J Am Chem Soc, 119, 5668(1997).

    [35] Y Kumagai, T Yamane, T Miyaji et al. Hydride vapor phase epitaxy of AlN: thermodynamic analysis of aluminum source and its application to growth. Phys Status Solidi C, 0, 2498(2003).

    [36] O Y Ledyaev, A E Cherenkov, A E Nikolaev et al. Properties of AlN layers grown on SiC substrates in wide temperature range by HVPE. International Workshop on Nitride Semiconductors, Proceedings, 474(2002).

    [37] A Nikolaev, I Nikitina, A Zubrilov et al. AlN wafers fabricated by hydride vapor phase epitaxy. MRS Internet J N S R, 5, W6.5(2000).

    [38] Y Melnik, D Tsvetkov, A Pechnikov et al. Characterization of AlN/SiC epitaxial wafers fabricated by hydride vapour phase epitaxy. Phys Status Solidi A, 188, 463(2001).

    [39] Y Melnik, V Soukhoveev, V Ivantsov et al. AlN substrates: fabrication via vapor phase growth and characterization. Phys Status Solidi A, 200, 22(2003).

    [40] O Kovalenkov, V Soukhoveev, V Ivantsov et al. Thick AlN layers grown by HVPE. J Cryst Growth, 281, 87(2005).

    [41] Y Kumagai, T Yamane, A Koukitu. Growth of thick AlN layers by hydride vapor-phase epitaxy. J Cryst Growth, 281, 62(2005).

    [42] Y H Liu, T Tanabe, H Miyake et al. Fabrication of thick AlN film by low pressure hydride vapor phase epitaxy. Phys Status Solidi C, 3, 1479(2006).

    [43] Y H Liu, T Tanabe, H Miyake et al. Growth of thick AlN layer by hydride vapor phase epitaxy. Jpn J Appl Phys Part 2, 44, 505(2005).

    [44] M S Sun, J C Zhang, J Huang et al. AlN thin film grown on different substrates by hydride vapor phase epitaxy. J Cryst Growth, 436, 62(2016).

    [45] X J Gong, K Xu, J Huang et al. Evolution of the surface morphology of AlN epitaxial film by HVPE. J Cryst Growth, 409, 100(2015).

    [46] K I Eriguchi, H Murakami, U Panyukova et al. MOVPE-like HVPE of AlN using solid aluminum trichloride source. J Cryst Growth, 298, 332(2007).

    [47] N Coudurier, R Boichot, V Fellmann et al. Effects of the V/III ratio on the quality of aluminum nitride grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Phys Status Solidi C, 10, 362(2013).

    [48] A Claudel, V Fellmanna, I Gelard et al. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Thin Solid Films, 573, 140(2014).

    [49] T Nagashima, M Harada, H Yanagi et al. High-speed epitaxial growth of AlN above 1200 °C by hydride vapor phase epitaxy. J Cryst Growth, 300, 42(2007).

    [50] H Amano, N Sawaki, I Akasaki et al. Metalorganic vapor-phase epitaxial-growth of a high-quality gan film using an AlN buffer layer. Appl Phys Lett, 48, 353(1986).

    [51] A Usui, H Sunakawa, A Sakai et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn J Appl Phys Part 2, 36, L899(1997).

    [52] O Ambacher. Growth and applications of Group III nitrides. J Phys D, 31, 2653(1998).

    [53] X H Wu, D Kapolnek, E J Tarsa et al. Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN. Appl Phys Lett, 68, 1371(1996).

    [54] T Nagashima, M H Ma, H Yanagi et al. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy. J Cryst Growth, 305, 355(2007).

    [55] X J Su, J C Zhang, J Huang et al. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process. J Cryst Growth, 467, 82(2017).

    [56] K Akiyama, T Araki, H Murakami et al. In situ gravimetric monitoring of decomposition rate on the surface of (0001)c-plane sapphire for the high temperature growth of AlN. Phys Status Solidi C, 4, 2297(2007).

    [57] D G Zhao, J J Zhu, Z S Liu et al. Surface morphology of AlN buffer layer and its effect on GaN growth by metalorganic chemical vapor deposition. Appl Phys Lett, 85, 1499(2004).

    [58] K Tsujisawa, S Kishino, Y H Liu et al. High temperature growth of AlN film by LP-HVPE. Phys Status Solidi C, 4, 2252(2007).

    [59] J Tajima, H Murakami, Y Kumagai et al. Preparation of a crack-free AlN template layer on sapphire substrate by hydride vapor-phase epitaxy at 1450 °C. J Cryst Growth, 311, 2837(2009).

    [60] J Tajima, Y Kubota, R Togashi et al. Growth of thin protective AlN layers on sapphire substrates at 1065 °C for hydride vapor phase epitaxy of AlN above 1300 °C. Phys Status Solidi C, 5, 1515(2008).

    [61] M Balaji, A Claudel, V Fellmann et al. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy. J Alloy Compd, 526, 103(2012).

    [62] H Miyake, G Nishio, S Suzuki et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl Phys Express, 9, 025501(2016).

    [63] J Huang, M T Niu, J C Zhang et al. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer. J Cryst Growth, 459, 159(2017).

    [64] X J Su, J Huang, J P Zhang et al. Microstructure and influence of buffer layer on threading dislocations in (0001) AlN/sapphire grown by hydride vapor phase epitaxy. J Cryst Growth, 515, 72(2019).

    [65] M Imura, K Nakano, G Narita et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth, 298, 257(2007).

    [66] Y Katagiri, S Kishino, K Okuura et al. Low-pressure HVPE growth of crack-free thick AlN on a trench-patterned AlN template. J Cryst Growth, 311, 2831(2009).

    [67] K Okumura, T Nomura, H Miyake et al. HVPE growth of AlN on trench-patterned 6H-SiC substrates. Phys Status Solidi C, 8, 467(2011).

    [68] G S Lee, C Lee, H Jeon et al. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy. Jpn J Appl Phys, 55, 05FC02(2016).

    [69] S Y Xiao, R Suzuki, H Miyake et al. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 502, 41(2018).

    [70] S Xiao, N Jiang, K Shojiki et al. Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy. Jpn J Appl Phys, 58, SC1003(2019).

    [71] X H Liu, J C Zhang, X J Su et al. Fabrication of crack-free AlN film on sapphire by hydride vapor phase epitaxy using an in situ etching method. Appl Phys Express, 9(2016).

    [72] T Prokofyeva, M Seon, J Vanbuskirk et al. Vibrational properties of AlN grown on (111)-oriented silicon. Phys Rev B, 63, 125313(2001).

    [73] Z P Huang, N Geyer, P Werner et al. Metal-assisted chemical etching of silicon: a review. Adv Mater, 23, 285(2011).

    [74] K Akiyama, H Murakami, Y Kumaga et al. In situ gravimetric monitoring of decomposition rate on surface of (10(1)over-bar2) r-plane sapphire for high-temperature growth of nonpolar AlN. Jpn J Appl Phys, 47, 3434(2008).

    [75] Y Kumagai, K Akiyama, R Togashi et al. Polarity dependence of AlN {0001} decomposition in flowing H2. J Cryst Growth, 305, 366(2007).

    [76] Y Kumagai, Y Enatsu, M Ishizuki et al. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE. J Cryst Growth, 312, 2530(2010).

    [77] Y Kumagai, J Tajima, M Ishizuki et al. Self-separation of a thick AIN layer from a sapphire substrate via interfacial voids formed by the decomposition of sapphire. Appl Phys Express, 1, 045003(2008).

    [78] M S Sun, J C Zhang, J Huang et al. Influence of thickness on strain state and surface morphology of AlN grown by HVPE. J Semicond, 37, 045501(2016).

    [79] Y Kumagai, Y Kubota, T Nagashima et al. Preparation of a freestanding AIN substrate from a thick AIN layer grown by hydride vapor phase epitaxy on a bulk AIN substrate prepared by physical vapor transport. Appl Phys Express, 5, 055504(2012).

    [80] T Nomura, K Okumura, H Miyake et al. AIN homoepitaxial growth on sublimation-AIN substrate by low-pressure HVPE. J Cryst Growth, 350, 69(2012).

    [81] T Nagashima, A Hakomori, T Shimoda et al. Preparation of freestanding AlN substrates by hydride vapor phase epitaxy using hybrid seed substrates. J Cryst Growth, 350, 75(2012).

    [82] Y Watanabe, H Miyake, K Hiramatsu et al. HVPE homoepitaxy on freestanding AlN substrate with trench pattern. Phys Status Solidi C, 12, 334(2015).

    [83] Y Kumagai, T Nagashima, A Koukitu. Preparation of a freestanding AlN substrate by hydride vapor phase epitaxy at 1230 °C using (111) Si as a starting substrate. Jpn J Appl Phys Part 2, 46, L389(2007).

    [84] J A Freitas, J C Culbertson, M A Mastro et al. Structural and optical properties of thick freestanding AlN films prepared by hydride vapor phase epitaxy. J Cryst Growth, 350, 33(2012).

    [85] V Soukhoveev, A Volkova, V Ivantsov et al. Large area GaN and AlN template substrates fabricated by HVPE. Phys Status Solidi C, 6, S333(2009).

    Maosong Sun, Jinfeng Li, Jicai Zhang, Wenhong Sun. The fabrication of AlN by hydride vapor phase epitaxy[J]. Journal of Semiconductors, 2019, 40(12): 121803
    Download Citation